cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030284 a(n) is the least prime > a(n-1) whose digits do not appear in a(n-1).

Original entry on oeis.org

2, 3, 5, 7, 11, 23, 41, 53, 61, 73, 89, 101, 223, 401, 523, 601, 727, 809, 1117, 2003, 4111, 5003, 6121, 7039, 8111, 9007, 11113, 20029, 31147, 50069, 71143, 80209, 111143, 200009, 311111, 400009, 511111, 600043, 711121, 800053, 911111, 2000003, 4111147, 5000263, 7111199, 8000023, 9111161
Offset: 1

Views

Author

Keywords

Comments

Sequence is infinite. - T. D. Noe, Jun 06 2007
a(n) may never have all of the 4 digits 1, 3, 7, 9: if a(n) has 3 of these digits then a(n+1) ends with the fourth one. - Pierre CAMI, May 06 2011

Crossrefs

Programs

  • Haskell
    import Data.List (intersect)
    a030284 n = a030284_list !! (n-1)
    a030284_list = f [] a000040_list where
       f xs (p:ps) = if null $ intersect xs ys then p : f ys ps else f xs ps
                     where ys = show p
    -- Reinhard Zumkeller, Sep 21 2013
  • Mathematica
    ta={1};Do[s1=IntegerDigits[Part[ta, Length[ta]]]; s2=IntegerDigits[Prime[n]];If[Equal[Intersection[s1, s2], {}], Print[{Prime[n], Prime[n+1]}];ta=Append[ta, Prime[n]]], {n, 1, 1000000}];ta=Delete[ta, 1] (* Labos Elemer, Nov 18 2004 *)

Extensions

More terms from Labos Elemer, Nov 18 2004