cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030442 Values of Newton-Gregory forward interpolating polynomial (1/6)*(4*n^4 - 60*n^3 + 347*n^2 - 927*n + 978).

Original entry on oeis.org

163, 57, 16, 4, 1, 3, 22, 86, 239, 541, 1068, 1912, 3181, 4999, 7506, 10858, 15227, 20801, 27784, 36396, 46873, 59467, 74446, 92094, 112711, 136613, 164132, 195616, 231429, 271951, 317578, 368722, 425811, 489289, 559616, 637268, 722737, 816531, 919174
Offset: 0

Views

Author

Ilias.Kotsireas(AT)lip6.fr (Ilias Kotsireas), Dec 11 1999

Keywords

Crossrefs

Cf. A059259.

Programs

  • Maple
    A030442:=n->(1/6)*(4*n^4-60*n^3+347*n^2-927*n+978); seq(A030442(n), n=0..40); # Wesley Ivan Hurt, May 19 2014
  • Mathematica
    Table[(1/6)*(4*n^4 - 60*n^3 + 347*n^2 - 927*n + 978), {n, 0, 40}] (* Wesley Ivan Hurt, May 19 2014 *)
  • PARI
    a(n) = (1/6)*(4*n^4-60*n^3+347*n^2-927*n+978); \\ Michel Marcus, May 18 2014

Formula

a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Colin Barker, May 18 2014
G.f.: -(386*x^4-1136*x^3+1361*x^2-758*x+163) / (x-1)^5. - Colin Barker, May 18 2014
a(n) = A059259(2*n-5,4), n>4. - Mathew Englander, May 18 2014
E.g.f.: exp(x)*(978 - 636*x + 195*x^2 - 36*x^3 + 4*x^4)/6. - Stefano Spezia, Sep 11 2022