A030457 Numbers k such that k concatenated with k+1 is prime.
2, 6, 8, 12, 36, 42, 50, 56, 62, 68, 78, 80, 90, 92, 96, 102, 108, 120, 126, 138, 150, 156, 180, 186, 188, 192, 200, 216, 242, 246, 252, 270, 276, 278, 300, 308, 312, 318, 330, 338, 342, 350, 362, 368, 378, 390, 402, 410, 416, 420, 426, 428, 432
Offset: 1
Examples
1213 is prime, therefore 12 is a term.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a030457 n = a030457_list !! (n-1) a030457_list = filter ((== 1) . a010051' . a001704) [1..] -- Reinhard Zumkeller, Jun 27 2015, Apr 26 2011
-
Magma
[n: n in [1..500] | IsPrime(Seqint(Intseq(n+1) cat Intseq(n)))]; // Vincenzo Librandi, Jul 23 2016
-
Maple
concat:=proc(a,b) local bb: bb:=nops(convert(b,base,10)): 10^bb*a+b end proc: a:=proc(n) if isprime(concat(n,n+1))=true then n else end if end proc: seq(a(n),n=0..500); # Emeric Deutsch, Nov 23 2007
-
Mathematica
Select[ Range[500], PrimeQ[ ToExpression[ StringJoin[ ToString[#], ToString[#+1]]]]&] (* Jean-François Alcover, Nov 18 2011 *) Select[Range[500],PrimeQ[FromDigits[Join[IntegerDigits[#], IntegerDigits[ #+1]]]]&] (* Harvey P. Dale, Dec 23 2015 *) Position[#[[1]]*10^IntegerLength[#[[2]]]+#[[2]]&/@Partition[Range[ 500], 2,1],?PrimeQ]//Flatten (* _Harvey P. Dale, Jul 14 2019 *)
-
PARI
for(n=1,10^5,if(isprime(eval(concat(Str(n),n+1))),print1(n,", "))); /* Joerg Arndt, Apr 27 2011 */
-
Python
from sympy import isprime def ok(n): return isprime(int(str(n)+str(n+1))) print([k for k in range(500) if ok(k)]) # Michael S. Branicky, Apr 19 2023
Comments