cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030457 Numbers k such that k concatenated with k+1 is prime.

Original entry on oeis.org

2, 6, 8, 12, 36, 42, 50, 56, 62, 68, 78, 80, 90, 92, 96, 102, 108, 120, 126, 138, 150, 156, 180, 186, 188, 192, 200, 216, 242, 246, 252, 270, 276, 278, 300, 308, 312, 318, 330, 338, 342, 350, 362, 368, 378, 390, 402, 410, 416, 420, 426, 428, 432
Offset: 1

Views

Author

Keywords

Comments

k is not congruent to 1 (mod 2), 1 (mod 3), or 4 (mod 5). - Charles R Greathouse IV, Apr 16 2012

Examples

			1213 is prime, therefore 12 is a term.
		

Crossrefs

Cf. A010051, A001704, A068700 (subsequence).
Numbers k such that k concatenated with k+m is prime: this sequence (m=1), A032617 (m=2), A032618 (m=3), A032619 (m=4), A032620 (m=5), A032621 (m=6), A032622 (m=7), A032623 (m=8), A032624 (m=9).

Programs

  • Haskell
    a030457 n = a030457_list !! (n-1)
    a030457_list = filter ((== 1) . a010051' . a001704) [1..]
    -- Reinhard Zumkeller, Jun 27 2015, Apr 26 2011
    
  • Magma
    [n: n in [1..500] | IsPrime(Seqint(Intseq(n+1) cat Intseq(n)))]; // Vincenzo Librandi, Jul 23 2016
    
  • Maple
    concat:=proc(a,b) local bb: bb:=nops(convert(b,base,10)): 10^bb*a+b end proc: a:=proc(n) if isprime(concat(n,n+1))=true then n else end if end proc: seq(a(n),n=0..500); # Emeric Deutsch, Nov 23 2007
  • Mathematica
    Select[ Range[500], PrimeQ[ ToExpression[ StringJoin[ ToString[#], ToString[#+1]]]]&] (* Jean-François Alcover, Nov 18 2011 *)
    Select[Range[500],PrimeQ[FromDigits[Join[IntegerDigits[#], IntegerDigits[ #+1]]]]&] (* Harvey P. Dale, Dec 23 2015 *)
    Position[#[[1]]*10^IntegerLength[#[[2]]]+#[[2]]&/@Partition[Range[ 500], 2,1],?PrimeQ]//Flatten (* _Harvey P. Dale, Jul 14 2019 *)
  • PARI
    for(n=1,10^5,if(isprime(eval(concat(Str(n),n+1))),print1(n,", "))); /* Joerg Arndt, Apr 27 2011 */
    
  • Python
    from sympy import isprime
    def ok(n): return isprime(int(str(n)+str(n+1)))
    print([k for k in range(500) if ok(k)]) # Michael S. Branicky, Apr 19 2023