A030482 Primes with property that when cubed all even digits occur together and all odd digits occur together.
2, 3, 11, 13, 17, 19, 31, 59, 71, 131, 137, 173, 179, 211, 293, 359, 431, 439, 587, 659, 1277, 4057, 6379, 13093, 13537, 15877, 25799, 28753, 29173, 36493, 39293, 39719, 40013, 60919, 66071, 69491, 73681, 87491, 126011, 137507, 138599, 189491, 199831, 201673
Offset: 1
Examples
17 is a term as 17^3 = 4913 which has even digits on one end and odd digits at the other. - _David A. Corneth_, Mar 27 2021
Links
- David A. Corneth, Table of n, a(n) for n = 1..107 (first 71 terms from Harvey P. Dale, terms <= 10^9)
Programs
-
Maple
q:= n-> (l-> add(irem(l[i]+l[i-1], 2), i=2..nops(l))<2)(convert(n^3, base, 10)): select(q, [ithprime(n)$n=1..20000])[]; # Alois P. Heinz, Mar 27 2021
-
Mathematica
Select[Prime[Range[13000]],Length[Split[If[OddQ[#],1,0]&/@ IntegerDigits[ #^3]]]<3&] (* Harvey P. Dale, Dec 31 2013 *)
-
Python
from sympy import primerange from itertools import groupby def ok(n): return len([k for k, g in groupby([int(d in "13579") for d in str(n)])]) <= 2 def aupto(limit): return [p for p in primerange(2, limit+1) if ok(p**3)] print(aupto(201673)) # Michael S. Branicky, Mar 27 2021
Extensions
Offset changed to 1 by David A. Corneth, Mar 27 2021