A030515 Numbers with exactly 6 divisors.
12, 18, 20, 28, 32, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 124, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 242, 243, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428
Offset: 1
References
- Amarnath Murthy, A note on the Smarandache Divisor sequences, Smarandache Notions Journal, Vol. 11, 1-2-3, Spring 2000.
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1000
- Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 1.4, 1.12.
- Eric Weisstein's World of Mathematics, Divisor Product
Crossrefs
Cf. A061117.
Programs
-
Maple
N:= 1000: # to get all terms <= N Primes:= select(isprime, {2,seq(i,i=3..floor(N/4))}): S:= select(`<=`,{seq(p^5, p = Primes),seq(seq(p*q^2, p=Primes minus {q}),q=Primes)},N): sort(convert(S,list)); # Robert Israel, Feb 10 2016
-
Mathematica
f[n_]:=Length[Divisors[n]]==6; lst={};Do[If[f[n],AppendTo[lst,n]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 14 2009 *) Select[Range[500],DivisorSigma[0,#]==6&] (* Harvey P. Dale, Oct 02 2014 *)
-
PARI
is(n)=numdiv(n)==6 \\ Charles R Greathouse IV, Jan 23 2014
-
Python
from sympy import divisor_count def ok(n): return divisor_count(n) == 6 print([k for k in range(429) if ok(k)]) # Michael S. Branicky, Dec 18 2021
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A030515(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(x//p**2) for p in primerange(isqrt(x)+1))+primepi(integer_nthroot(x,3)[0])-primepi(integer_nthroot(x,5)[0]) return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025
Formula
A000005(a(n))=6. - Juri-Stepan Gerasimov, Oct 10 2009
Extensions
Definition clarified by Jonathan Sondow, Jan 23 2014
Comments