A054753 Numbers which are the product of a prime and the square of a different prime (p^2 * q).
12, 18, 20, 28, 44, 45, 50, 52, 63, 68, 75, 76, 92, 98, 99, 116, 117, 124, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 242, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428, 436, 452
Offset: 1
Keywords
Examples
a(1) = 12 because 12 = 2^2*3 is the smallest number of the form p^2*q.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Guilhem Castagnos, Antoine Joux, Fabien Laguillaumie, and Phong Q. Nguyen, Factoring pq^2 with quadratic forms: nice cryptanalyses, Advances in Cryptology - ASIACRYPT 2009. Lecture Notes in Computer Science Volume 5912 (2009), pp. 469-486.
- Diophante, A 350, Les Nombres d'Einstein (in French).
- Mathematics Stack Exchange, Sequence of numbers with prime factorization pq^2
- René Peralta and Eiji Okamoto, Faster factoring of integers of a special form (1996).
- Index to sequences related to prime signature
Crossrefs
Table giving for each subsequence the corresponding number of groups of order p^2*q, from Bernard Schott, Jan 23 2022
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
|A000001(p^2*q)| (q+9)/2 | 5 | 5 | 4 | 3 | 2 |
-------------------------------------------------------------------------------
Programs
-
Mathematica
Select[Range[12,452], {1,2}==Sort[Last/@FactorInteger[ # ]]&] (* Zak Seidov, Jul 19 2009 *) With[{nn=60},Take[Union[Flatten[{#[[1]]#[[2]]^2,#[[1]]^2 #[[2]]}&/@ Subsets[ Prime[Range[nn]],{2}]]],nn]] (* Harvey P. Dale, Dec 15 2014 *)
-
PARI
is(n)=vecsort(factor(n)[,2])==[1,2]~ \\ Charles R Greathouse IV, Dec 30 2014
-
PARI
for(n=1, 1e3, if(numdiv(n) - bigomega(n) == 3, print1(n, ", "))) \\ Altug Alkan, Nov 24 2015
-
Python
from sympy import factorint def ok(n): return sorted(factorint(n).values()) == [1, 2] print([k for k in range(453) if ok(k)]) # Michael S. Branicky, Dec 18 2021
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A054753(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(x//p**2) for p in primerange(isqrt(x)+1))+primepi(integer_nthroot(x,3)[0]) return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025
Extensions
Link added and incorrect Mathematica code removed by David Bevan, Sep 17 2011
Comments