cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A274357 Numbers n such that n and n+1 both have 8 divisors.

Original entry on oeis.org

104, 135, 189, 230, 231, 285, 296, 344, 374, 375, 429, 434, 609, 645, 663, 664, 741, 776, 782, 805, 874, 902, 903, 969, 986, 1001, 1015, 1022, 1029, 1065, 1085, 1095, 1105, 1106, 1112, 1130, 1161, 1208, 1221, 1245, 1265, 1269, 1309, 1310, 1334, 1335, 1374, 1406, 1431
Offset: 1

Views

Author

Keywords

Crossrefs

Intersection of A005237 and A030626.
Numbers n such that n and n+1 both have k divisors: A039832 (k=4), A049103 (k=6), A274357 (k=8), A215197 (k=10), A174456 (k=12), A274358 (k=14), A274359 (k=16), A274360 (k=18), A274361 (k=20), A274366 (k=22), A274362 (k=24), A274363 (k=26), A274364 (k=28), A274365 (k=30).
Cf. A000005.

Programs

  • Mathematica
    SequencePosition[DivisorSigma[0,Range[2000]],{8,8}][[All,1]] (* Harvey P. Dale, Sep 07 2021 *)
  • PARI
    is(n)=numdiv(n)==8 && numdiv(n+1)==8

A075036 Smaller of two smallest consecutive numbers with 2n divisors.

Original entry on oeis.org

2, 14, 44, 104, 2511, 735, 29888, 2295, 6075, 5264, 2200933376, 5984, 689278976, 156735, 180224, 21735, 2035980763136, 223244, 9399153082499072, 458864, 41680575, 701443071, 2503092614937444351, 201824, 2707370000, 29785673727, 46977524, 5475519, 1737797404898095794225152
Offset: 1

Views

Author

Amarnath Murthy, Sep 03 2002

Keywords

Comments

There cannot be two consecutive numbers with the same odd number of divisors as both cannot be squares.
These numbers have the property that a(n) * (a(n) + 1) has 4*n^2 divisors. - David A. Corneth, Jun 24 2016
Conjecture: if a term k is even, the highest p-adic order of k (the maximum may be attained by several p's) occurs at p=2 and the highest p-adic order of k+1 occurs at p=3. If a term k is odd, the highest p-adic order of k occurs at p=3 and the highest p-adic order of k+1 occurs at p=2. - Chai Wah Wu, Mar 12 2019
a(49) = 378401464109375, a(58) = 79921490583489592950783. - Jon E. Schoenfield, May 07 2022
a(51) = 34210814718574592, a(55) = 2481402804069375, a(57) = 394311388855795712. - Jon E. Schoenfield, Nov 06 2023 - Nov 08 2023

Examples

			a(4) = 104 as tau(104) = tau(105) = 8.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (For[k=1, ! (DivisorSigma[0, k] == 2*n && DivisorSigma[0, k+1] == 2*n), k++]; k); Array[a, 10] (* Giovanni Resta, Jun 24 2016 *)
  • PARI
    a(n) = my(k=1); while(numdiv(k)!=2*n || numdiv(k+1)!=2*n, k++); k \\ Felix Fröhlich, Jun 24 2016

Formula

a(n) <= A215199(n-1) for n > 1. Conjecture: if p is prime, then a(p) = A215199(p-1). This conjecture is true if the conjecture in A215199 is true. The b-file of A215199 thus shows that a(p) = A215199(p-1) for prime p < 1279. - Chai Wah Wu, Mar 12 2019

Extensions

a(5)-a(24) from Max Alekseyev, Mar 12 2009
a(25)-a(28) from Giovanni Resta, Jun 24 2016
a(29) from Chai Wah Wu, Mar 12 2019

A066308 a(n) = (sum of digits of n) * (product of digits of n).

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 0, 6, 16, 30, 48, 70, 96, 126, 160, 198, 0, 12, 30, 54, 84, 120, 162, 210, 264, 324, 0, 20, 48, 84, 128, 180, 240, 308, 384, 468, 0, 30, 70, 120, 180, 250, 330, 420, 520, 630, 0, 42, 96, 162, 240, 330
Offset: 1

Views

Author

Labos Elemer, Dec 13 2001

Keywords

Comments

a(n) can be greater than, less than, or equal to n; see Example section.

Examples

			For n = 12, a(12) = (1 + 2)*(1*2) = 3*2 = 6 < n;
for n = 19, a(19) = (1 + 9)*(1*9) = 90 > n;
for n = 135, a(135) =(1 + 3 + 5)*(1*3*5) = 135 = n.
		

Crossrefs

Programs

  • Mathematica
    asum[x_] := Apply[Plus, IntegerDigits[x]] apro[x_] := Apply[Times, IntegerDigits[x]] a[n]=asum[n]*apro[n]
    sdpd[n_]:=Module[{idn=IntegerDigits[n]},Total[idn]Times@@idn]; Array[ sdpd,70] (* Harvey P. Dale, Dec 31 2011 *)
  • PARI
    a(n) = my(d = digits(n)); vecsum(d) * vecprod(d); \\ Michel Marcus, Feb 24 2017

Extensions

Edited by Jon E. Schoenfield, Jul 09 2018

A348076 Number k such that k and k+1 both have an equal number of even and odd exponents in their prime factorization (A187039).

Original entry on oeis.org

44, 75, 98, 116, 147, 171, 175, 207, 244, 332, 368, 387, 404, 507, 548, 603, 604, 656, 724, 800, 832, 844, 847, 891, 908, 931, 963, 1052, 1075, 1083, 1124, 1250, 1251, 1323, 1324, 1412, 1467, 1556, 1587, 1675, 1772, 1791, 2096, 2224, 2312, 2348, 2367, 2511, 2523
Offset: 1

Views

Author

Amiram Eldar, Sep 27 2021

Keywords

Comments

First differs from A049103 and A074172 at n=7.

Examples

			44 is a term since 44 = 2^2 * 11 and 44 + 1 = 45 = 3^2 * 5 both have one even and one odd exponent in their prime factorization.
		

Crossrefs

Subsequence of A187039.
A074172 is a subsequence.
Cf. A049103.

Programs

  • Mathematica
    q[n_] := n == 1 || Count[(e = FactorInteger[n][[;; , 2]]), ?OddQ] == Count[e, ?EvenQ]; Select[Range[2500], q[#] && q[# + 1] &]
  • Python
    from sympy import factorint
    def aupto(limit):
        alst, cond = [], False
        for nxtk in range(3, limit+2):
            evenodd = [0, 0]
            for e in factorint(nxtk).values():
                evenodd[e%2] += 1
            nxtcond = (evenodd[0] == evenodd[1])
            if cond and nxtcond:
                alst.append(nxtk-1)
            cond = nxtcond
        return alst
    print(aupto(2523)) # Michael S. Branicky, Sep 27 2021

A049104 Numbers k such that k and k-1 both have 6 divisors.

Original entry on oeis.org

45, 76, 99, 117, 148, 172, 243, 244, 245, 333, 388, 508, 549, 604, 605, 725, 845, 909, 932, 964, 1076, 1084, 1252, 1325, 1413, 1468, 1557, 1588, 1676, 1773, 2524, 2525, 2637, 2645, 2764, 3284, 3357, 3412, 3509, 3789, 3988, 4076, 4204, 4205, 4419, 4492, 4805, 4869, 4924, 4925
Offset: 1

Views

Author

Keywords

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1986, p. 103.

Crossrefs

Programs

Formula

a(n) = A049103(n)+1. - Zak Seidov, Feb 11 2016

A348345 Number k such that k and k+1 have the same positive number of noninfinitary divisors (A348341).

Original entry on oeis.org

44, 75, 98, 116, 147, 171, 242, 243, 244, 332, 387, 507, 548, 603, 604, 724, 735, 819, 844, 908, 931, 963, 1035, 1075, 1083, 1196, 1251, 1274, 1275, 1324, 1412, 1449, 1467, 1556, 1587, 1665, 1675, 1772, 1924, 1925, 1952, 1988, 2324, 2331, 2511, 2523, 2524, 2540
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2021

Keywords

Comments

First differs from A049103 at n=17.
Numbers k such that A348341(k) = A348341(k+1) > 0.
The terms are restricted to have a positive number of noninfinitary divisors, since there are many consecutive numbers without noninfinitary divisors (these are the terms of A036537).

Examples

			44 is a term since A348341(44) = A348341(45) = 2 > 0.
		

Crossrefs

Subsequence of A162643.
Similar sequences: A005237, A006049, A343819, A344312, A344313, A344314.

Programs

  • Mathematica
    nid[1] = 0; nid[n_] := DivisorSigma[0, n] - Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[;; , 2]]]; Select[Range[2500],(nid1 = nid[#]) > 0 && nid1 == nid[# + 1] &]
  • PARI
    A348341(n) = (numdiv(n)-factorback(apply(a -> 2^hammingweight(a), factorint(n)[, 2])));
    isA348345(n) = { my(u=A348341(n)); (u>0&&(A348341(1+n)==u)); }; \\ Antti Karttunen, Oct 13 2021

A038400 List of pairs of consecutive numbers each with 6 divisors (duplicates removed).

Original entry on oeis.org

44, 45, 75, 76, 98, 99, 116, 117, 147, 148, 171, 172, 242, 243, 244, 245, 332, 333, 387, 388, 507, 508, 548, 549, 603, 604, 605, 724, 725, 844, 845, 908, 909, 931, 932, 963, 964, 1075, 1076, 1083, 1084, 1251, 1252, 1324, 1325, 1412, 1413, 1467, 1468, 1556, 1557, 1587, 1588
Offset: 1

Views

Author

Keywords

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, p. 103.

Crossrefs

Programs

  • Mathematica
    SequencePosition[DivisorSigma[0,Range[1600]],{6,6}]//Flatten//Union (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 23 2017 *)

Extensions

More terms from Olivier Gérard

A356743 Numbers k such that k and k+2 both have exactly 6 divisors.

Original entry on oeis.org

18, 50, 242, 243, 423, 475, 603, 637, 722, 845, 925, 1682, 1773, 2007, 2523, 2525, 2527, 3123, 3175, 3177, 4203, 4475, 4525, 4923, 5823, 6725, 6811, 6962, 7299, 7442, 7675, 8425, 8957, 8973, 9457, 9925, 10051, 10082, 10467, 11673, 11709, 12427, 12482, 12591, 13023, 13075
Offset: 1

Views

Author

Jianing Song, Aug 25 2022

Keywords

Comments

If an even number has exactly 6 divisors, then it is of the form 32, 4*p or 2*p^2 for an odd prime p. Note that 4*p + 2 = 2*q^2 is impossible since q^2 - 1 is divisible by 24 for prime q >= 5. As a result, if k is an even term, then it is of the form 2*p^2 such that (p^2+1)/2 is a prime (p is in A048161).

Examples

			50 is a term since 50 and 52 both have 6 divisors.
		

Crossrefs

Cf. A048161.
Numbers k such that k and k+2 both have exactly m divisors: A001359 (m=2), A356742 (m=4), this sequence (m=6), A356744 (m=8).
Cf. also A049103 (numbers k such that k and k+1 both have exactly 6 divisors).

Programs

  • PARI
    isA356743(n) = numdiv(n)==6 && numdiv(n+2)==6
Showing 1-8 of 8 results.