cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A256240 Numbers n such that repeatedly setting n := A066308(n) yields a constant nonzero n.

Original entry on oeis.org

1, 89, 98, 135, 139, 144, 153, 193, 233, 315, 319, 323, 332, 351, 391, 414, 441, 513, 531, 913, 931, 1224, 1242, 1367, 1376, 1422, 1637, 1673, 1736, 1763, 2124, 2142, 2214, 2241, 2412, 2421, 3167, 3176, 3617, 3671, 3716, 3761, 4122, 4212
Offset: 1

Views

Author

David A. Corneth, Mar 20 2015

Keywords

Comments

Eventually, these values of n become nonzero elements of A038369; 1, 135 or 144.

Examples

			89 is an element because (8 + 9) * 8 * 9 = 1224, then (1 + 2 + 2 + 4) * 1 * 2 * 2 * 4 = 144, then (1 + 4 + 4) * 1 * 4 * 4 = 144. Repetition so stop. 144 > 0 so 89 is an element.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000], FixedPoint[Total[#] Apply[Times, #] &@ IntegerDigits@ # &, #] > 0 &] (* Michael De Vlieger, Aug 16 2017 *)
  • PARI
    \\test if n is an element.
    is(n)=while(n!=SP(n),n=SP(n));n>0
    \\Sum of digits times product of digits of n (A066308(n))
    SP(n)={d=digits(n);prod(i=1,#d,d[i])*vecsum(d)}

A256242 Numbers having digits in nondecreasing order and repeatedly setting n := A066308(n) yields a constant nonzero n.

Original entry on oeis.org

1, 89, 135, 139, 144, 233, 1224, 1367, 11249, 12222, 111126, 111266, 111338, 112229, 112337, 1111119, 1111134, 1111137, 1111177, 1111333, 1111346, 11111117, 11111119, 11111223, 11112236, 111111119, 111111139, 111111299, 111112334, 1111111169, 1111122233, 11111111118, 11111111133, 11111111369, 111111111133
Offset: 1

Views

Author

David A. Corneth, Mar 20 2015

Keywords

Comments

Intersection of A009994 and A256240. All digits differ from 0.
Permutations of all numbers of the elements in the table give the first 56622402 elements from A256240 (unsorted).

Crossrefs

Programs

  • PARI
    isok(n) = {d = digits(n); if (vecsort(d,,2) == d, ok = 1; while (ok, newn = sum(k=1, #d, d[k])*prod(k=1,#d, d[k]); if (! newn, return (0)); if (newn == n, return (1)); n = newn; d = digits(n);););} \\ Michel Marcus, Mar 27 2015

A038369 Numbers k such that k = (product of digits of k) * (sum of digits of k).

Original entry on oeis.org

0, 1, 135, 144
Offset: 1

Views

Author

Keywords

Comments

The list is complete. Proof: One shows that the number of digits is at most 84 and then it is only necessary to consider numbers of the forms 2^i*3^j*7^k and 3^i*5^j*7^k. - David W. Wilson, May 16 2003

Examples

			144 belongs to the sequence because 1*4*4=16, 1+4+4=9 -> 16*9=144
		

Crossrefs

Programs

  • Mathematica
    pdsdQ[n_]:=Module[{idn=IntegerDigits[n]},(Total[idn]Times@@idn)==n]; Select[Range[0,150],pdsdQ]  (* Harvey P. Dale, Apr 23 2011 *)
  • PARI
    is(n)=my(d=digits(n)); factorback(d)*vecsum(d)==n \\ Charles R Greathouse IV, Feb 06 2017

Formula

a(n) = A007953(a(n)) * A007954(a(n)).

A369529 a(n) = gcd(A007953(n), A007954(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 3, 1, 1, 3, 1, 1, 9, 1, 1, 3, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 6, 1, 4, 9, 2, 1, 12, 1, 2, 3, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 9, 1, 1, 3
Offset: 1

Views

Author

Ctibor O. Zizka, Jan 25 2024

Keywords

Examples

			a(15) = gcd(A007953(15), A007954(15)) = gcd(6,5) = 1.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := GCD @@ Apply[{Plus @@ #, Times @@ #} &, {IntegerDigits[n]}]; Array[a, 100] (* Amiram Eldar, Jan 26 2024 *)
Showing 1-4 of 4 results.