cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A007955 Product of divisors of n.

Original entry on oeis.org

1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19, 8000, 441, 484, 23, 331776, 125, 676, 729, 21952, 29, 810000, 31, 32768, 1089, 1156, 1225, 10077696, 37, 1444, 1521, 2560000, 41, 3111696, 43, 85184, 91125, 2116, 47, 254803968, 343
Offset: 1

Views

Author

R. Muller

Keywords

Comments

All terms of this sequence occur only once. See the second T. D. Noe link for a proof. - T. D. Noe, Jul 07 2008
Every natural number has a unique representation in terms of divisor products. See the W. Lang link. - Wolfdieter Lang, Feb 08 2011
a(n) = n only if n is prime or 1 (or, if n is in A008578). - Alonso del Arte, Apr 18 2011
Sometimes called the "divisorial" of n. - Daniel Forgues, Aug 03 2012
a(n) divides EulerPhi(x^n-y^n) (see A. Rotkiewicz link). - Michel Marcus, Dec 15 2012
The proof that all the terms of this sequence occur only once (mentioned above) was given by Niven in 1984. - Amiram Eldar, Aug 16 2020

Examples

			Divisors of 10 = [1, 2, 5, 10]. So, a(10) = 2*5*10 = 100. - _Indranil Ghosh_, Mar 22 2017
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 57.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 83.

Crossrefs

Cf. A000203 (sums of divisors).
Cf. A000010 (comments on product formulas).

Programs

  • GAP
    List(List([1..50],n->DivisorsInt(n)),Product); # Muniru A Asiru, Feb 17 2019
  • Haskell
    a007955 = product . a027750_row  -- Reinhard Zumkeller, Feb 06 2012
    
  • Magma
    f := function(n); t1 := &*[d : d in Divisors(n) ]; return t1; end function;
    
  • Maple
    A007955 := proc(n) mul(d,d=numtheory[divisors](n)) ; end proc: # R. J. Mathar, Mar 17 2011
    seq(isqrt(n^numtheory[tau](n)), n=1..50); # Gary Detlefs, Feb 15 2019
  • Mathematica
    Array [ Times @@ Divisors[ # ]&, 100 ]
    a[n_] := n^(DivisorSigma[0, n]/2); Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 21 2013 *)
  • PARI
    a(n)=if(issquare(n,&n),n^numdiv(n^2),n^(numdiv(n)/2)) \\ Charles R Greathouse IV, Feb 11 2011
    
  • Python
    from sympy import prod, divisors
    print([prod(divisors(n)) for n in range(1, 51)]) # Indranil Ghosh, Mar 22 2017
    
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A007955(n):
        d = divisor_count(n)
        return isqrt(n)**d if d % 2 else n**(d//2) # Chai Wah Wu, Jan 05 2022
    
  • Sage
    [prod(divisors(n)) for n in (1..100)] # Giuseppe Coppoletta, Dec 16 2014
    
  • Sage
    [n^(sigma(n,0)/2) for n in (1..49)] # Stefano Spezia, Jul 14 2025
    
  • Scheme
    ;; A naive stand-alone implementation:
    (define (A007955 n) (let loop ((d n) (m 1)) (cond ((zero? d) m) ((zero? (modulo n d)) (loop (- d 1) (* m d))) (else (loop (- d 1) m)))))
    ;; Faster, if A000005 and A000196 are available:
    (define (A007955 n) (A000196 (expt n (A000005 n))))
    ;; Antti Karttunen, Mar 22 2017
    

Formula

a(n) = n^(d(n)/2) = n^(A000005(n)/2). Since a(n) = Product_(d|n) d = Product_(d|n) n/d, we have a(n)*a(n) = Product_(d|n) d*(n/d) = Product_(d|n) n = n^(tau(n)), whence a(n) = n^(tau(n)/2).
a(p^k) = p^A000217(k). - Enrique Pérez Herrero, Jul 22 2011
a(n) = A078599(n) * A178649(n). - Reinhard Zumkeller, Feb 06 2012
a(n) = A240694(n, A000005(n)). - Reinhard Zumkeller, Apr 10 2014
From Antti Karttunen, Mar 22 2017: (Start)
a(n) = A000196(n^A000005(n)). [From the original formula.]
A001222(a(n)) = A069264(n). [See Geoffrey Critzer's Feb 03 2015 comment in the latter sequence.]
A046523(a(n)) = A283995(n).
(End)
a(n) = Product_{k=1..n} gcd(n,k)^(1/phi(n/gcd(n,k))) = Product_{k=1..n} (n/gcd(n,k))^(1/phi(n/gcd(n,k))) where phi = A000010. - Richard L. Ollerton, Nov 07 2021
From Bernard Schott, Jan 11 2022: (Start)
a(n) = n^2 iff n is in A007422.
a(n) = n^3 iff n is in A162947.
a(n) = n^4 iff n is in A111398.
a(n) = n^5 iff n is in A030628.
a(n) = n^(3/2) iff n is in A280076. (End)
From Amiram Eldar, Oct 29 2022: (Start)
a(n) = n * A007956(n).
Sum_{k=1..n} 1/a(k) ~ log(log(n)) + c + O(1/log(n)), where c is a constant (Weiyi, 2004; Sandor and Crstici, 2004). (End)
a(n) = Product_{k=1..n} (n * (1 - ceiling(n/k - floor(n/k))))/k + ceiling(n/k - floor(n/k)). - Adriano Steffler, Feb 08 2024

A003680 Smallest number with 2n divisors.

Original entry on oeis.org

2, 6, 12, 24, 48, 60, 192, 120, 180, 240, 3072, 360, 12288, 960, 720, 840, 196608, 1260, 786432, 1680, 2880, 15360, 12582912, 2520, 6480, 61440, 6300, 6720, 805306368, 5040, 3221225472, 7560, 46080, 983040, 25920, 10080, 206158430208, 3932160, 184320, 15120
Offset: 1

Views

Author

Keywords

Comments

Refers to the least number which is multiplicatively n-perfect, i.e. least number m the product of whose divisors equals m^n. - Lekraj Beedassy, Sep 18 2004
For n=1 to 5, a(n) equals second term of A008578, A007422, A162947, A048945, A030628. - Michel Marcus, Feb 04 2014

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 23.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005179 (n), A061283 (2n-1), A118224 (at least 2n).

Programs

  • Mathematica
    A005179 = Cases[Import["https://oeis.org/A005179/b005179.txt", "Table"], {, }][[All, 2]];
    A = {#, DivisorSigma[0, #]}& /@ A005179;
    a[n_] := SelectFirst[A, #[[2]] == 2n&][[1]];
    a /@ Range[1000] (* Jean-François Alcover, Nov 10 2019 *)
    mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[m < n, {}, {{n}}]; mp[n_, m_] := Join @@ Table[Map[Prepend[#, d] &, mp[n/d, d]], {d, Select[Rest[Divisors[n]], # <= m &]}]; mp[n_] := mp[n, n]; Table[mulpar = mp[2*n] - 1; Min[Table[Product[Prime[s]^mulpar[[j, s]], {s, 1, Length[mulpar[[j]]]}], {j, 1, Length[mulpar]}]], {n, 1, 100}] (* Vaclav Kotesovec, Apr 04 2021 *)
    With[{tbl=Table[{n,DivisorSigma[0,n]},{n,800000}]},Table[SelectFirst[tbl,#[[2]]==2k&],{k,20}]][[;;,1]] (* The program generates the first 20 terms of the sequence. *) (* Harvey P. Dale, Jul 06 2025 *)
  • PARI
    a(n)=my(k=2*n); while(numdiv(k)!=2*n, k++); k \\ Charles R Greathouse IV, Jun 23 2017
    
  • Python
    from sympy import divisors
    def a(n):
      m = 4*n - 2
      while len(divisors(m)) != 2*n: m += 1
      return m
    print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Feb 06 2021

Formula

Bisection of A005179(n). - Lekraj Beedassy, Sep 21 2004

Extensions

More terms from Jud McCranie Oct 15 1997

A292286 a(n) = k if the product of the divisors of n is n^k for some integer k, or -1 if no such k exists. For the ambiguous case, define a(1) = 0.

Original entry on oeis.org

0, 1, 1, -1, 1, 2, 1, 2, -1, 2, 1, 3, 1, 2, 2, -1, 1, 3, 1, 3, 2, 2, 1, 4, -1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, -1, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, -1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, -1, 2, 4, 1, 3, 2, 4, 1, 6, 1, 2, 3, 3, 2, 4, 1, 5, -1, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 3, -1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 13 2017

Keywords

Comments

If the number of divisors (nd) of n > 1 is odd, then a(n) = -1, else a(n) = nd/2. - Michel Marcus, Sep 14 2017
First occurrence of k beginning with -1 is A293570(r). - Robert G. Wilson v, Oct 10 2017
Records occur for A293570(r): 4, 6, 12, 24, 48, 60, 192, 240, 3072, 12288, 196608, 786432, 12582912, 805306368, etc. - Robert G. Wilson v, Oct 10 2017

Examples

			a(10) = 2 because divisors of 10 are 1,2,5,10 with product 100 = 10^2.
		

Crossrefs

Numbers n such that the product of divisors of n is n^k: A000040 (k = 1), A007422 (k = 2), A162947 (k = 3), A111398 (k = 4), A030628 (k = 5), A030630 (k = 6).

Programs

  • Mathematica
    Table[Boole[n == 1] + If[OddQ@ #, -1, #/2] &@ DivisorSigma[0, n], {n, 100}] (* Michael De Vlieger, Sep 15 2017 *)
  • PARI
    a(n) = if (n==1, 0, my(nd = numdiv(n)); if (nd % 2, -1, nd/2)); \\ Michel Marcus, Sep 14 2017
    
  • PARI
    a(n)=my(k=numdiv(n)); if(k%2, if(n>1, -1, 0), k/2) \\ Charles R Greathouse IV, Sep 19 2017

Formula

a(1) = 0, a(A000290(n+1)) = -1, a(A000037(n+1)) = A056924(A000037(n+1)), where A000290 = the squares and A000037 = the nonsquares.

Extensions

Definition corrected by Charles R Greathouse IV, Sep 13 2017
Showing 1-3 of 3 results.