cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A064735 Next prime containing prime(n) in decimal notation.

Original entry on oeis.org

23, 13, 53, 17, 113, 113, 173, 191, 223, 229, 131, 137, 241, 431, 347, 353, 359, 461, 167, 271, 173, 179, 283, 389, 197, 1013, 1031, 5107, 1091, 2113, 1277, 1319, 1373, 1399, 1493, 1151, 1571, 1163, 3167, 1733, 2179, 1181, 1913, 1193, 1973, 1993, 2111
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 17 2001

Keywords

Crossrefs

Programs

  • PARI
    a(n)={ my(q=prime(n), m=10^(logint(q,10)+1)); forprime(p=m, oo, my(x=p); while(x>=q, if(x%m==q, return(p)); x\=10)) } \\ Harry J. Smith, Sep 24 2009

Formula

a(n) = A252629(n) + prime(n). - Zak Seidov, Dec 19 2014

A065112 Smallest prime whose decimal expansion ends (nontrivially) with the n-th prime; or 0 if no such prime exists.

Original entry on oeis.org

0, 13, 0, 17, 211, 113, 317, 419, 223, 229, 131, 137, 241, 443, 347, 353, 359, 461, 167, 271, 173, 179, 283, 389, 197, 5101, 1103, 5107, 1109, 2113, 4127, 2131, 2137, 4139, 11149, 1151, 4157, 1163, 3167, 6173, 2179, 1181, 3191, 1193, 5197, 6199, 4211
Offset: 1

Views

Author

Robert G. Wilson v, Nov 12 2001

Keywords

Comments

a(1) and a(3) (respectively for primes 2 and 5) are trivially zero. All other terms are nonzero by Dirichlet's theorem on arithmetic progressions. - Joerg Arndt, Jun 06 2021

Crossrefs

Cf. A030670.

Programs

  • Mathematica
    f[n_] := (k = 1; While[a = ToExpression[ ToString[k] <> ToString[n]]; ! PrimeQ[a], k++ ]; a); Table[ f[ Prime[n]], {n, 4, 50} ]

A064792 Append more digits to the n-th prime (leading zeros are permitted) until another prime is reached.

Original entry on oeis.org

23, 31, 53, 71, 113, 131, 173, 191, 233, 293, 311, 373, 419, 431, 479, 5303, 593, 613, 673, 719, 733, 797, 839, 8923, 971, 1013, 1031, 10709, 1091, 11311, 1277, 1319, 1373, 1399, 1493, 1511, 1571, 1637, 16703, 1733, 17903, 1811, 1913, 1931, 1973
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 17 2001

Keywords

Comments

Differs from A030670 in that here the appended digits may start with 0 which is not possible there (although zeros are allowed there, too, if they are not the first appended digit): The first difference appears at a(16) = 5303 where A030670(16) = 5323. - M. F. Hasler, Jan 15 2025

Crossrefs

Cf. A030665.
See A030670 for another version. Note that A030670 >= a(n). Cf. A065112.

Programs

  • PARI
    apply( {A064792(n)=n=prime(n);for(L=1,oo, n*=10; forstep(s=1,10^L-1,2, isprime(n+s)&& return(n+s)))}, [1..44]) \\ M. F. Hasler, Jan 15 2025

Formula

a(n) = A030665(prime(n)). - Michel Marcus, Jan 17 2025

A178220 Smallest number that appending to n-th prime gives another prime.

Original entry on oeis.org

3, 1, 3, 1, 3, 1, 3, 1, 3, 3, 1, 3, 9, 1, 9, 23, 3, 3, 3, 9, 3, 7, 9, 23, 1, 3, 1, 11, 1, 11, 7, 9, 3, 9, 3, 1, 1, 7, 29, 3, 11, 1, 3, 1, 3, 3, 1, 7, 3, 3, 3, 3, 1, 11, 9, 3, 3, 1, 7, 9, 3, 9, 9, 9, 7, 21, 3, 1, 21, 1, 3, 3, 1, 3, 3, 3, 17, 19, 3, 1, 11, 1, 17, 7, 1, 51, 3, 37, 33, 7
Offset: 1

Views

Author

Zak Seidov, Dec 20 2010

Keywords

Examples

			n=1: prime(1)=2, A030670(1)=23, after deleting 2 we get a(1)=3
n=2: prime(2)=3, A030670(2)=31, after deleting 3 we get a(2)=1
		

Crossrefs

Cf. A030670.

Programs

  • Mathematica
    f[n_] := (k = 1; tsn = ToString[n]; While[a = ToExpression[tsn <> ToString[k]]; !PrimeQ[a], k++]; k);
    Table[f[Prime[n]], {n, 1, 200}]

Formula

a(n) = A030670(n) after deleting n-th prime.
Showing 1-4 of 4 results.