A030983 Number of rooted noncrossing trees with n nodes such that root has degree 1 and the child of the root has degree at least 2.
0, 3, 16, 83, 442, 2420, 13566, 77539, 450340, 2650635, 15777450, 94815732, 574518536, 3506232184, 21533144486, 132980242755, 825304177544, 5144743785545, 32199189658020, 202252227085755, 1274578959894450, 8056409137803600, 51063344718826440
Offset: 3
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 3..200
- A. Asinowski, B. Hackl, and S. Selkirk, Down step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.
- Marc Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998.
- Index entries for sequences related to rooted trees
Programs
-
Maple
h := arcsin((3*sqrt(3)*sqrt(x))/2)/3: gf := x*(64/9)*sin(h)^6*(1 - sin(h)^2*(8/9)): ser := series(gf, x, 32): seq(coeff(ser, x, n), n=3..25); # Peter Luschny, Aug 08 2020 # Recurrence: a := proc(n) option remember; if n < 4 then return 0 fi; if n = 4 then return 3 fi; -((378*n^3 - 4536*n^2 + 18102*n - 24024)*a(n - 2) + (-1271*n^3 + 10308*n^2 - 26857*n + 22020)*a(n - 1))/(180*n^3 - 1170*n^2 + 2070*n - 1080) end: seq(a(n), n=3..25); # Peter Luschny, Aug 08 2020
-
Mathematica
a[n_] := Binomial[3n-5, n-2]/(n-1) - 2 Binomial[3n-8, n-3]/(n-2); a /@ Range[3, 25] (* Jean-François Alcover, Nov 03 2020, after A102892 *)
-
PARI
a(n)=(19*n-31)*binomial(3*n-8, n-4)/(n-1)/(2*n-3); /* Joerg Arndt, Mar 07 2013 */
-
PARI
concat(0, Vec((g->g^3*(3-2*g))(serreverse(x-2*x^2+x^3 + O(x^25))))) \\ Andrew Howroyd, Nov 12 2017
Formula
a(n) = (19*n - 31)*binomial(3*n - 8, n - 4)/(n - 1)/(2*n - 3).
G.f.: g^3*(3 - 2*g) where g*(1 - g)^2 = x. - Mark van Hoeij, Nov 09 2011 [That is, g = (4/3) * sin((1/3)*arcsin(sqrt(27*x/4)))^2 = x*(o.g.f. of A006013). - Petros Hadjicostas, Aug 08 2020]
From Vladimir Kruchinin, Mar 06 2013: (Start)
a(n) = binomial(3*n-5, 2*n-3)/(n-1) - 2*binomial(3*n-8, 2*n-5)/(n-2), n > 2.
a(n) = Sum_{i=1..n-3} binomial(3*i-2, 2*i-1) * binomial(3*(n-i-2), 2*(n-i-2)-1)/ (i*(n-i-2)). (End)
a(n) ~ (76*3^(3*n - 15/2))/(4^n*sqrt(Pi)*n^(3/2)). - Peter Luschny, Aug 08 2020
D-finite with recurrence 2*(n-1)*(2*n-3)*a(n) +(-43*n^2+196*n-213)*a(n-1) +2*(62*n^2-446*n+759)*a(n-2) -12*(3*n-14)*(3*n-16)*a(n-3)=0. - R. J. Mathar, Jul 26 2022
D-finite with recurrence 2*(n-1)*(n-4)*(2*n-3)*(19*n-50)*a(n) -3*(3*n-10)*(3*n-8)*(n-3)*(19*n-31)*a(n-1)=0. - R. J. Mathar, Jul 26 2022
Comments