cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030983 Number of rooted noncrossing trees with n nodes such that root has degree 1 and the child of the root has degree at least 2.

Original entry on oeis.org

0, 3, 16, 83, 442, 2420, 13566, 77539, 450340, 2650635, 15777450, 94815732, 574518536, 3506232184, 21533144486, 132980242755, 825304177544, 5144743785545, 32199189658020, 202252227085755, 1274578959894450, 8056409137803600, 51063344718826440
Offset: 3

Views

Author

Keywords

Comments

From Andrei Asinowski, May 09 2020: (Start)
With offset 0 (i.e., a(0) = 0 and a(1) = 3), a(n) is the total number of down-steps after the final up-step in all 2_1-Dyck paths of length 3*n.
A 2_1-Dyck path is a lattice path with steps U = (1, 2) and d = (1, -1) that starts at (0,0), stays (weakly) above the line y = -1, and ends at the x-axis.
For n = 2, a(2) = 16 is the total number of down-steps after the final up-step in dUddUd, dUdUdd, dUUddd, UdddUd, UddUdd, UdUddd, UUdddd (thus, 1 + 2 + 3 + 1 + 2 + 3 + 4). (End)

Crossrefs

Column k=1 of A102892.
Cf. A006013.

Programs

  • Maple
    h := arcsin((3*sqrt(3)*sqrt(x))/2)/3:
    gf := x*(64/9)*sin(h)^6*(1 - sin(h)^2*(8/9)): ser := series(gf, x, 32):
    seq(coeff(ser, x, n), n=3..25); # Peter Luschny, Aug 08 2020
    # Recurrence:
    a := proc(n) option remember; if n < 4 then return 0 fi; if n = 4 then return 3 fi;
    -((378*n^3 - 4536*n^2 + 18102*n - 24024)*a(n - 2) + (-1271*n^3 + 10308*n^2 - 26857*n + 22020)*a(n - 1))/(180*n^3 - 1170*n^2 + 2070*n - 1080) end:
    seq(a(n), n=3..25); # Peter Luschny, Aug 08 2020
  • Mathematica
    a[n_] := Binomial[3n-5, n-2]/(n-1) - 2 Binomial[3n-8, n-3]/(n-2);
    a /@ Range[3, 25] (* Jean-François Alcover, Nov 03 2020, after A102892 *)
  • PARI
    a(n)=(19*n-31)*binomial(3*n-8, n-4)/(n-1)/(2*n-3); /* Joerg Arndt, Mar 07 2013 */
    
  • PARI
    concat(0, Vec((g->g^3*(3-2*g))(serreverse(x-2*x^2+x^3 + O(x^25))))) \\ Andrew Howroyd, Nov 12 2017

Formula

a(n) = (19*n - 31)*binomial(3*n - 8, n - 4)/(n - 1)/(2*n - 3).
G.f.: g^3*(3 - 2*g) where g*(1 - g)^2 = x. - Mark van Hoeij, Nov 09 2011 [That is, g = (4/3) * sin((1/3)*arcsin(sqrt(27*x/4)))^2 = x*(o.g.f. of A006013). - Petros Hadjicostas, Aug 08 2020]
From Vladimir Kruchinin, Mar 06 2013: (Start)
a(n) = binomial(3*n-5, 2*n-3)/(n-1) - 2*binomial(3*n-8, 2*n-5)/(n-2), n > 2.
a(n) = Sum_{i=1..n-3} binomial(3*i-2, 2*i-1) * binomial(3*(n-i-2), 2*(n-i-2)-1)/ (i*(n-i-2)). (End)
a(n) ~ (76*3^(3*n - 15/2))/(4^n*sqrt(Pi)*n^(3/2)). - Peter Luschny, Aug 08 2020
D-finite with recurrence 2*(n-1)*(2*n-3)*a(n) +(-43*n^2+196*n-213)*a(n-1) +2*(62*n^2-446*n+759)*a(n-2) -12*(3*n-14)*(3*n-16)*a(n-3)=0. - R. J. Mathar, Jul 26 2022
D-finite with recurrence 2*(n-1)*(n-4)*(2*n-3)*(19*n-50)*a(n) -3*(3*n-10)*(3*n-8)*(n-3)*(19*n-31)*a(n-1)=0. - R. J. Mathar, Jul 26 2022