cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031348 2-multiplicative persistence: number of iterations of "multiply 2nd powers of digits" needed to reach 0 or 1.

Original entry on oeis.org

0, 7, 6, 6, 3, 5, 5, 4, 5, 1, 1, 7, 6, 6, 3, 5, 5, 4, 5, 1, 7, 6, 5, 4, 2, 4, 5, 3, 4, 1, 6, 5, 5, 4, 3, 4, 4, 3, 4, 1, 6, 4, 4, 3, 2, 3, 3, 2, 4, 1, 3, 2, 3, 2, 3, 2, 3, 2, 2, 1, 5, 4, 4, 3, 2, 4, 5, 2, 4, 1, 5, 5, 4, 3, 3, 5, 2, 5, 4, 1, 4, 3, 3, 2, 2, 2, 5, 2, 3, 1, 5, 4, 4, 4, 2, 4, 4, 3, 3
Offset: 1

Views

Author

Keywords

Comments

From Mohammed Yaseen, Nov 08 2022: (Start)
Is 7 the maximal 2-multiplicative persistence?
Are A199986 the only numbers whose 2-multiplicative persistence is 7?
These hold true for n up to 10^9. (End)

Examples

			a(14) = 6 because
14 -> 1^2 * 4^2 = 16;
16 -> 1^2 * 6^2 = 36;
36 -> 3^2 * 6^2 = 324;
324 -> 3^2 * 2^2 * 4^2 = 576;
576 -> 5^2 * 7^2 * 6^2 = 44100;
44100 -> 0 => the trajectory is 14 -> 16 -> 36 -> 324 -> 576 -> 44100 -> 0 with 6 iterations. - _Michel Lagneau_, May 22 2013
		

References

  • M. Gardner, Fractal Music, Hypercards and More Mathematical Recreations from Scientific American, Persistence of Numbers, pp. 120-1; 186-7, W. H. Freeman, NY, 1992.

Crossrefs

Cf. A031346.

Programs

  • Mathematica
    m2pd[n_]:=Length[NestWhileList[Times@@(IntegerDigits[#]^2)&,n,#>1&]]-1; Array[m2pd,100] (* Harvey P. Dale, Apr 19 2020 *)
  • PARI
    f(n) = my(d=digits(n)); prod(k=1, #d, d[k]^2);
    a(n) = if (n==1, 0, my(nb=1); while(((new = f(n)) > 1), n = new; nb++); nb); \\ Michel Marcus, Jun 13 2018
    
  • Python
    from math import prod
    from itertools import count, islice
    def f(n): return prod(map(lambda x: x*x, map(int, str(n))))
    def a(n):
        c = 0
        while n not in {0, 1}: n, c = f(n), c+1
        return c
    print([a(n) for n in range(1, 100)]) # Michael S. Branicky, Oct 13 2022