A031367 Inflation orbit counts.
1, 0, 3, 4, 10, 12, 28, 40, 72, 110, 198, 300, 520, 812, 1350, 2160, 3570, 5688, 9348, 15000, 24444, 39402, 64078, 103320, 167750, 270920, 439128, 709800, 1149850, 1859010, 3010348, 4868640, 7880994, 12748470, 20633200, 33379200, 54018520, 87394452, 141421800
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2000
- A. R. Ashrafi, J. Azarija, K. Fathalikhani, S. Klavzar, et al., Orbits of Fibonacci and Lucas cubes, dihedral transformations, and asymmetric strings, 2014.
- A. R. Ashrafi, J. Azarija, K. Fathalikhani, S. Klavzar and M. Petkovsek, Vertex and edge orbits of Fibonacci and Lucas cubes, 2014; See Table 3.
- Michael Baake, Joachim Hermisson, Peter Pleasants, The torus parametrization of quasiperiodic LI-classes J. Phys. A 30 (1997), no. 9, 3029-3056.
Programs
-
Maple
A031367 := proc(n) add( numtheory[mobius](d)*A001350(n/d), d=numtheory[divisors](n)) ; end proc: # R. J. Mathar, Jul 15 2016 # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(binomial(a(i)/i+j-1, j)*b(n-i*j, i-1), j=0..n/i))) end: a:= proc(n) a(n):= ((<<0|1>, <1|1>>^n)[1, 2]-b(n, n-1))*n end: seq(a(n), n=1..40); # Alois P. Heinz, Jun 22 2018
-
Mathematica
a[n_] := n*Sum[MoebiusMu[d]*Sum[Binomial[k-1, 2k-n/d]/(n-d*k), {k, 0, n/d-1} ], {d, Divisors[n]}]; Array[a, 40] (* Jean-François Alcover, Jul 09 2018 *)
Formula
If b(n) is the n-th term of A001350, then a(n) = Sum_{d|n} mu(d)b(n/d).
a(n) = n * A060280(n).
G.f.: Sum_{k>=1} mu(k) * x^k * (1 + x^(2*k)) / ((1 - x^(2*k)) * (1 - x^k - x^(2*k))). - Ilya Gutkovskiy, Feb 06 2020
Extensions
More terms from James Sellers
Comments