cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031367 Inflation orbit counts.

Original entry on oeis.org

1, 0, 3, 4, 10, 12, 28, 40, 72, 110, 198, 300, 520, 812, 1350, 2160, 3570, 5688, 9348, 15000, 24444, 39402, 64078, 103320, 167750, 270920, 439128, 709800, 1149850, 1859010, 3010348, 4868640, 7880994, 12748470, 20633200, 33379200, 54018520, 87394452, 141421800
Offset: 1

Views

Author

Keywords

Comments

Also number of primitive Lucas strings of length n [Ashrafi et al.] - N. J. A. Sloane, Nov 19 2014
The preceding comment is true for all n except n=2, as there are 2 primitive Lucas strings of length 2. The sequence of the number of primitive Lucas strings is the Möbius transform of the Lucas numbers A000032. - Pontus von Brömssen, Jan 24 2019

Crossrefs

Programs

  • Maple
    A031367 := proc(n)
        add( numtheory[mobius](d)*A001350(n/d), d=numtheory[divisors](n)) ;
    end proc: # R. J. Mathar, Jul 15 2016
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i)/i+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) a(n):= ((<<0|1>, <1|1>>^n)[1, 2]-b(n, n-1))*n end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Jun 22 2018
  • Mathematica
    a[n_] := n*Sum[MoebiusMu[d]*Sum[Binomial[k-1, 2k-n/d]/(n-d*k), {k, 0, n/d-1} ], {d, Divisors[n]}];
    Array[a, 40] (* Jean-François Alcover, Jul 09 2018 *)

Formula

If b(n) is the n-th term of A001350, then a(n) = Sum_{d|n} mu(d)b(n/d).
a(n) = n * A060280(n).
G.f.: Sum_{k>=1} mu(k) * x^k * (1 + x^(2*k)) / ((1 - x^(2*k)) * (1 - x^k - x^(2*k))). - Ilya Gutkovskiy, Feb 06 2020

Extensions

More terms from James Sellers