cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031924 Primes followed by a gap of 6, i.e., next prime is p + 6.

Original entry on oeis.org

23, 31, 47, 53, 61, 73, 83, 131, 151, 157, 167, 173, 233, 251, 257, 263, 271, 331, 353, 367, 373, 383, 433, 443, 503, 541, 557, 563, 571, 587, 593, 601, 607, 647, 653, 677, 727, 733, 751, 941, 947, 971, 977, 991, 1013, 1033, 1063, 1097, 1103, 1117, 1123, 1181
Offset: 1

Views

Author

Keywords

Comments

Original name: Lower prime of a difference of 6 between consecutive primes.
Conjecture: The sequence is infinite and for every n >= 7746, a(n+1) < a(n)^(1+1/n). Namely for n >= 7746, a(n)^(1/n) is a strictly decreasing function of n (See comment lines of the sequence A248855). - Jahangeer Kholdi and Farideh Firoozbakht, Nov 29 2014

Examples

			23 is a term as the next prime 29 = 23 + 6.
		

Crossrefs

Cf. A001359, A023201, A031925; A031924 and A007529 together give A023201.

Programs

  • GAP
    P:=Filtered([1..1200],IsPrime);;
    List(Filtered([1..Length(P)-1],i->P[i+1]-P[i]=6),k->P[k]); # Muniru A Asiru, Jan 30 2019
  • Magma
    [p: p in PrimesUpTo(1200) | NextPrime(p)-p eq 6]; // Bruno Berselli, Apr 09 2013
    
  • Maple
    A031924 := proc(n)
        option remember;
        if n = 1 then
            return 23;
        else
            p := nextprime(procname(n-1)) ;
            q := nextprime(p) ;
            while q-p <> 6 do
                p := q ;
                q := nextprime(p) ;
            end do:
            return p;
        end if;
    end proc: # R. J. Mathar, Jan 23 2013
  • Mathematica
    Transpose[Select[Partition[Prime[Range[200]], 2, 1], Last[#] - First[#] == 6 &]][[1]] (* Bruno Berselli, Apr 09 2013 *)
  • PARI
    is(n)=isprime(n)&&nextprime(n+1)-n==6 \\ Charles R Greathouse IV, Mar 21 2013
    
  • PARI
    apply( A031924(n,p=2,show=0,g=6)={forprime(q=p+1,, p+g!=(p=q) || (show&&print1(p-g",")) || n-- || return(p-g))}, [1..99]) \\ Use nxt(p)=A031924(1,p) to get the term following p, use show=1 to print all a(1..n), g to select a different gap. - M. F. Hasler, Jan 02 2020
    

Extensions

New name from M. F. Hasler, Jan 02 2020