cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031926 Lower prime of a difference of 8 between consecutive primes.

Original entry on oeis.org

89, 359, 389, 401, 449, 479, 491, 683, 701, 719, 743, 761, 911, 929, 983, 1109, 1163, 1193, 1373, 1439, 1523, 1559, 1571, 1733, 1823, 1979, 2003, 2153, 2213, 2243, 2273, 2459, 2531, 2609, 2663, 2699, 2741, 2843, 2879, 2909, 3011, 3041
Offset: 1

Views

Author

Keywords

Comments

Conjecture: The sequence is infinite and for every n, a(n+1) < a(n)^(1+1/n). Namely a(n)^(1/n) is a strictly decreasing function of n (see comment lines of the sequence A248855). - Jahangeer Kholdi and Farideh Firoozbakht, Nov 29 2014

Crossrefs

Cf. A023202.

Programs

  • Magma
    [p: p in PrimesUpTo(4000) | NextPrime(p)-p eq 8]; // Bruno Berselli, Apr 09 2013
    
  • Maple
    for i from 1 to 446 do if ithprime(i+1) = ithprime(i) + 8 then print({ithprime(i)}); fi; od; # Zerinvary Lajos, Mar 19 2007
    p:=ithprime; nx:=nextprime; f:=proc(d) global p,nx; local i,t0,n; t0:=[]; for n from 1 to 100000 do i:=p(n); if nx(i)-i=d then t0:=[op(t0),i]; fi; od: t0; end; f(8); # N. J. A. Sloane, Jan 17 2012
  • Mathematica
    Transpose[Select[Partition[Prime[Range[500]], 2, 1], Last[#] - First[#] == 8 &]][[1]] (* Bruno Berselli, Apr 09 2013 *)
  • PARI
    is_A031926(p)={precprime(p-1)==p-8 && isprime(p)} \\ M. F. Hasler, Apr 20 2013
    
  • PARI
    q=0;forprime(p=1,5000,q+8==(q=p)&&print1(p-8",")) \\ M. F. Hasler, Apr 20 2013