cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A031970 Tennis ball problem: Balls 1 and 2 are thrown into a room; you throw one on lawn; then balls 3 and 4 are thrown in and you throw any of the 3 balls onto the lawn; then balls 5 and 6 are thrown in and you throw one of the 4 balls onto the lawn; after n turns, consider all possible collections on lawn and add all the values.

Original entry on oeis.org

0, 3, 23, 131, 664, 3166, 14545, 65187, 287060, 1247690, 5368670, 22917198, 97195968, 410030812, 1722027973, 7204620067, 30044212828, 124932768082, 518215690018, 2144815618522, 8859729437488, 36533517261412, 150410878895818, 618371102344846, 2538971850705064, 10412490129563556
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..30], n-> (2*n^2+5*n+4)*Binomial(2*n+1, n)/(n+2) - 2^(2*n+1)); # G. C. Greubel, Apr 02 2019
  • Magma
    [(2*n^2+5*n+4)*Binomial(2*n+1, n)/(n+2) - 2^(2*n+1): n in [0..30]]; // G. C. Greubel, Apr 02 2019
    
  • Mathematica
    CoefficientList[Series[(1-9*x+20*x^2-(1-7*x+8*x^2)*Sqrt[1-4*x])/(2*x^2*(1 -8*x+16*x^2)), {x,0,30}],x] (* G. C. Greubel, Apr 02 2019 *)
  • PARI
    a(n) = (2*n^2 + 5*n + 4)*binomial(2*n+1, n)/(n+2) - 2^(2*n+1);
    /* Joerg Arndt, Dec 04 2012 */
    
  • Sage
    [(2*n^2+5*n+4)*binomial(2*n+1, n)/(n+2) - 2^(2*n+1) for n in (0..30)] # G. C. Greubel, Apr 02 2019
    

Formula

a(n) = (2*n^2 + 5*n + 4)*binomial(2*n+1, n)/(n+2) - 2^(2*n+1). - Colin Mallows.
a(n) = Sum_{i=0..n-1} (4*n-4*i-1)*A028364(n,i), where A028364 is a Catalan triangle. e.g. for n=3 T[3..] = [5,7,9,14] then S(3) = 131 = 11*5 + 7*7 + 3*9. - David Scambler, Apr 27 2009
G.f.: (1-9*x+20*x^2-(1-7*x+8*x^2)*sqrt(1-4*x))/(2*x^2*(1-8*x+16*x^2)). - Vladimir Kruchinin, Apr 02 2019
D-finite with recurrence: (n+2)*a(n) +(-15*n-14)*a(n-1) +2*(40*n-3)*a(n-2) +8*(-22*n+25)*a(n-3) +64*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jan 28 2020

Extensions

More terms from Joerg Arndt, Dec 04 2012