A032109 "BIJ" (reversible, indistinct, labeled) transform of 1,1,1,1,...
1, 1, 2, 7, 38, 271, 2342, 23647, 272918, 3543631, 51123782, 811316287, 14045783798, 263429174191, 5320671485222, 115141595488927, 2657827340990678, 65185383514567951, 1692767331628422662, 46400793659664205567, 1338843898122192101558, 40562412499252036940911
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..424 (first 101 terms from R. J. Mathar)
- C. G. Bower, Transforms (2)
Crossrefs
Programs
-
Maple
A032109 := proc(n) (A000670(n)+1)/2 ; end proc: # R. J. Mathar, Oct 17 2012 a := n -> (polylog(-n, 1/2)+`if`(n=0,3,2))/4: seq(round(evalf(a(n), 32)), n=0..18); # Peter Luschny, Nov 03 2015 # alternative Maple program: b:= proc(n, m) option remember; `if`(n=0, m!, add(b(n-1, max(m, j)), j=1..m+1)) end: a:= n-> (b(n,0)+1)/2: seq(a(n), n=0..23); # Alois P. Heinz, Sep 29 2017
-
Mathematica
Table[(PolyLog[-n, 1/2] + 2 + KroneckerDelta[n])/4, {n, 0, 20}] (* Vladimir Reshetnikov, Nov 02 2015 *)
-
PARI
a(n)=if(n<0,0,n!*polcoeff(subst((1-y^2/2)/(1-y),y,exp(x+x*O(x^n))-1),n))
-
PARI
list(n)=my(v=Vec(subst((1-y^2/2)/(1-y),y,exp(x+x*O(x^n))-1)));vector(n+1,i,v[i]*(i-1)!) \\ Charles R Greathouse IV, Oct 17 2012
Formula
E.g.f.: (e^(2*x)-2*e^x-1)/(2*e^x-4).
a(n) = (A000670(n)+1)/2. - Vladeta Jovovic, Apr 13 2003
a(n) = A052875(n)/2 + 1. - Max Alekseyev, Jan 31 2021
a(n) ~ sqrt(Pi/2)*n^(n+1/2)/(2*log(2)^(n+1)*exp(n)). - Ilya Gutkovskiy, Aug 06 2016
a(n) = Sum_{s in S_n^even} Product_{i=1..n} binomial(i,s(i)-1), where s ranges over the set S_n^even of even permutations of [n]. - Jose A. Rodriguez, Feb 02 2021
Comments