A032125 "BIK" (reversible, indistinct, unlabeled) transform of 3,3,3,3...
3, 9, 30, 108, 408, 1584, 6240, 24768, 98688, 393984, 1574400, 6294528, 25171968, 100675584, 402677760, 1610661888, 6442549248, 25770000384, 103079608320, 412317646848, 1649269014528, 6597072912384, 26388285358080, 105553128849408
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- C. G. Bower, Transforms (2)
- Index entries for linear recurrences with constant coefficients, signature (6,-8)
Crossrefs
a(n) = A048240(2^n).
Programs
-
Mathematica
Table[3*2^(n-2)(2^(n-1)+1),{n,30}] (* or *) LinearRecurrence[{6,-8},{3,9},30] (* Harvey P. Dale, Jan 01 2012 *) RecurrenceTable[{a[0]== 3, a[1]== 9, a[n]== 6*a[n-1] - 8*a[n-2]}, a, {n,50}] (* G. C. Greubel, Aug 22 2015 *)
Formula
a(n) = 3*2^(n-2)*(2^(n-1)+1). - Vladeta Jovovic, Dec 22 2002
Binomial transform of A067771 (if the offset is changed to 0). - Carl Najafi, Sep 09 2011
G.f. -3*x*(-1+3*x) / ( (4*x-1)*(2*x-1) ). a(n)=3*A007582(n-1). - R. J. Mathar, Sep 11 2011
a(1)=3, a(2)=9, a(n) = 6*a(n-1)-8*a(n-2). [Harvey P. Dale, Jan 01 2012]
E.g.f.: (3/8)*(exp(4*x) + 2*exp(2*x) - 3). - G. C. Greubel, Aug 22 2015
Comments