cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032125 "BIK" (reversible, indistinct, unlabeled) transform of 3,3,3,3...

Original entry on oeis.org

3, 9, 30, 108, 408, 1584, 6240, 24768, 98688, 393984, 1574400, 6294528, 25171968, 100675584, 402677760, 1610661888, 6442549248, 25770000384, 103079608320, 412317646848, 1649269014528, 6597072912384, 26388285358080, 105553128849408
Offset: 1

Views

Author

Keywords

Comments

Number of solutions (x,y,z) to x+y+z = 2^n, x>=0, y>=0, z>=0, gcd(x,y,z)=1. - Vladeta Jovovic, Dec 22 2002

Crossrefs

a(n) = A048240(2^n).

Programs

  • Mathematica
    Table[3*2^(n-2)(2^(n-1)+1),{n,30}] (* or *) LinearRecurrence[{6,-8},{3,9},30] (* Harvey P. Dale, Jan 01 2012 *)
    RecurrenceTable[{a[0]== 3, a[1]== 9, a[n]== 6*a[n-1]  - 8*a[n-2]}, a, {n,50}] (* G. C. Greubel, Aug 22 2015 *)

Formula

a(n) = 3*2^(n-2)*(2^(n-1)+1). - Vladeta Jovovic, Dec 22 2002
Binomial transform of A067771 (if the offset is changed to 0). - Carl Najafi, Sep 09 2011
G.f. -3*x*(-1+3*x) / ( (4*x-1)*(2*x-1) ). a(n)=3*A007582(n-1). - R. J. Mathar, Sep 11 2011
a(1)=3, a(2)=9, a(n) = 6*a(n-1)-8*a(n-2). [Harvey P. Dale, Jan 01 2012]
E.g.f.: (3/8)*(exp(4*x) + 2*exp(2*x) - 3). - G. C. Greubel, Aug 22 2015