cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A092431 Numbers having in binary representation a leading 1 followed by n zeros and n-1 ones.

Original entry on oeis.org

2, 9, 35, 135, 527, 2079, 8255, 32895, 131327, 524799, 2098175, 8390655, 33558527, 134225919, 536887295, 2147516415, 8590000127, 34359869439, 137439215615, 549756338175, 2199024304127, 8796095119359, 35184376283135, 140737496743935, 562949970198527
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 23 2004

Keywords

Comments

Smallest numbers having in binary representation n 0's and n 1's: a(n) = Min{m: A023416(m)=A000120(m)=n}.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7, -14, 8}, {2, 9, 35}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2012 *)
    Table[FromDigits[Join[PadRight[{1},n,0],PadRight[{},n-2,1]],2],{n,2,30}]//Sort (* or *) Rest[CoefficientList[Series[x (-2+5x)/((x-1)(2x-1)(4x-1)),{x,0,30}],x]] (* Harvey P. Dale, Jul 30 2021 *)

Formula

a(n+1) = 2*a(n) + 4^n + 1.
a(n) = 2^(2*n-1) + 2^(n-1) - 1.
a(n) = A007582(n)-1 = A056326(2n+1) = A005367(n-1)/2 = A063376(n)/2-1 = A032125(n+1)/3-1 = A056309(2n+1)/2 = A028403(n+1)/4-1 = (A001576(n)-3)/2 = (A028400(n+1)-9)/8 = Sum_{k=2..n+1} A049775(k). - Ralf Stephan, Mar 24 2004
G.f.: x*(-2+5*x) / ( (x-1)*(2*x-1)*(4*x-1) ). - R. J. Mathar, Jun 01 2011
E.g.f.: exp(x)*(exp(3*x) + exp(x) - 2)/2. - Stefano Spezia, Sep 27 2023

A048240 Number of new colors that can be mixed with n units of yellow, blue, red.

Original entry on oeis.org

1, 3, 3, 7, 9, 18, 15, 33, 30, 45, 42, 75, 54, 102, 81, 108, 108, 168, 117, 207, 156, 210, 195, 297, 204, 330, 270, 351, 306, 462, 300, 525, 408, 510, 456, 612, 450, 738, 567, 708, 600, 900, 594, 987, 750, 900, 825, 1173, 792, 1239, 930, 1200
Offset: 0

Views

Author

Jurjen N.E. Bos, N. J. A. Sloane, Robin Trew (trew(AT)hcs.harvard.edu)

Keywords

Crossrefs

A032125(n) = a(2^n).

Programs

  • Maple
    A048240 := proc(n) local ans, i, j, k; ans := 0; for i from n by -1 to 0 do for j from n by -1 to 0 do k := n - i - j; if 0 <= k and k <= n and gcd(gcd(i, j), k) = 1 then ans := ans + 1; fi; od; od; RETURN(ans); end;
  • Mathematica
    a[n_] := Sum[ MoebiusMu[n/d]*(d+1)*(d+2)/2, {d, Divisors[n]}]; a[0] = 1; Table[a[n], {n, 0, 51}] (* Jean-François Alcover, Jun 14 2012, after Vladeta Jovovic *)

Formula

a(n) = number of triples (i, j, k) with i+j+k = n and gcd(i, j, k) = 1.
a(n) = Sum_{d|n} mu(n/d)*(d+1)*(d+2)/2. G.f.: Sum_{k>0} mu(k)/(1-x^k)^3. - Vladeta Jovovic, Dec 22 2002
Showing 1-2 of 2 results.