A032170 "CHK" (necklace, identity, unlabeled) transform of 1, 2, 3, 4, ...
1, 2, 5, 10, 24, 50, 120, 270, 640, 1500, 3600, 8610, 20880, 50700, 124024, 304290, 750120, 1854400, 4600200, 11440548, 28527320, 71289000, 178526880, 447910470, 1125750120, 2833885800, 7144449920, 18036373140, 45591631800, 115381697740, 292329067800
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..2400
- Kam Cheong Au, Evaluation of one-dimensional polylogarithmic integral, with applications to infinite series, arXiv:2007.03957 [math.NT], 2020. See line N = 6 in Table 1 (p. 6).
- C. G. Bower, Transforms (2).
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Eric Weisstein's World of Mathematics, Arnold's cat map.
- Wikipedia, Arnold's cat map.
- Index entries for sequences related to Lyndon words
Crossrefs
Programs
-
Mathematica
Table[DivisorSum[n, MoebiusMu[n/#] (LucasL[2 #] - 2) &]/n, {n, 31}] (* Michael De Vlieger, Nov 18 2017 *)
Formula
a(n) = (1/n)*Sum_{d | n} mu(n/d)*A004146(d). - Vladeta Jovovic, Feb 15 2003
Inverse EULER transform of Fibonacci(2*n). - Vladeta Jovovic, May 04 2006
G.f.: Sum_{n >= 1} (mu(n)/n)*f(x^n), where f(y) = log((1 - y)^2/(1 - 3*y + y^2)). - Petros Hadjicostas, Nov 17 2017
It appears that the sequence b(1) = 3, b(n) = a(n) for n >= 2 is related to the rational sequence (c(w, N=6): w >= 1) = (A005248(w)/w: w >= 1) whose g.f. is log(1/(1 - a*t + b*t^2)), where a = phi(N)/2 + omega(N) and b = omega(N) - 1 when N = 6, where phi is A000010 and omega is A001221. See Kam Cheong Au (2020). - Michel Marcus, Jul 13 2020 [Edited by Petros Hadjicostas, Jul 13 2020]
Comments