A032280 Number of bracelets (turnover necklaces) of n beads of 2 colors, 7 of them black.
1, 1, 4, 8, 20, 38, 76, 133, 232, 375, 600, 912, 1368, 1980, 2829, 3936, 5412, 7293, 9724, 12760, 16588, 21287, 27092, 34112, 42640, 52819, 65008, 79392, 96405, 116280, 139536, 166464, 197676, 233529, 274740, 321741, 375364
Offset: 7
References
- N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 7..1000
- C. G. Bower, Transforms (2)
- S. J. Cyvin, B. N. Cyvin, J. Brunvoll, I. Gutman, Chen Rong-si, S. El-Basil, and Zhang Fuji, Polygonal systems including the corannulene and coronene homologs: novel applications of Pólya's theorem, Z. Naturforsch., 52a (1997), 867-873.
- Hansraj Gupta, Enumeration of incongruent cyclic k-gons, Indian J. Pure and Appl. Math., 10 (1979), no. 8, 964-999.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Vladimir Shevelev, Necklaces and convex k-gons, Indian J. Pure and Appl. Math., 35 (2004), no. 5, 629-638.
- Vladimir Shevelev, Necklaces and convex k-gons, Indian J. Pure and Appl. Math., 35 (2004), no. 5, 629-638.
- Vladimir Shevelev, A problem of enumeration of two-color bracelets with several variations, arXiv:0710.1370 [math.CO], 2007-2011.
- Vladimir Shevelev, Spectrum of permanent's values and its extremal magnitudes in Lambda_n^3 and Lambda_n(alpha,beta,gamma), arXiv:1104.4051 [math.CO], 2011. (Cf. Section 5).
- Index entries for sequences related to bracelets
- Index entries for linear recurrences with constant coefficients, signature (3,0,-8,6,6,-8,1,0,-1,8,-6,-6,8,0,-3,1).
Crossrefs
Column k=7 of A052307.
Programs
-
Mathematica
k = 7; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *) CoefficientList[Series[-(4 x^6 - 2 x^5 - 2 x^4 + 4 x^3 + x^2 - 2 x + 1)/((x - 1)^7 (x + 1)^3 (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 19 2013 *) k=7; CoefficientList[Series[x^k*(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2,{x,0,50}],x] (* Herbert Kociemba, Nov 04 2016 *)
Formula
S. J. Cyvin et al. (1997) give a g.f.
"DIK[ 7 ]" (necklace, indistinct, unlabeled, 7 parts) transform of 1, 1, 1, 1...
From Vladimir Shevelev, Apr 23 2011: (Start)
Put s(n,k,d) = 1, if n == k(mod d); 0, otherwise. Then
a(n) = (3/7)*s(n,0,7) + (48*C(n-1,6) + 7*(n-2)*(n-4)*(n-6))/672, if n is even;
a(n) = (3/7)*s(n,0,7) + (48*C(n-1,6) + 7*(n-1)*(n-3)*(n-5))/672, if n is odd. (End)
G.f.: -x^7*(4*x^6-2*x^5-2*x^4+4*x^3+x^2-2*x+1) / ((x-1)^7*(x+1)^3*(x^6+x^5+x^4+x^3+x^2+x+1)). - Colin Barker, Feb 06 2013
From Herbert Kociemba, Nov 05 2016: (Start)
G.f.: (1/2)*x^7*((1+x)/(1-x^2)^4 + 1/7*(1/(1-x)^7 + 6/(1-x^7))).
G.f.: k=7, x^k*((1/k)*Sum_{d|k} phi(d)*(1-x^d)^(-k/d) + (1+x)/(1-x^2)^floor((k+2)/2))/2. [edited by Petros Hadjicostas, Jul 18 2018] (End)
Comments