cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032437 Substrings from the right are prime numbers (using only odd digits different from 5).

Original entry on oeis.org

3, 7, 13, 17, 37, 73, 97, 113, 137, 173, 197, 313, 317, 337, 373, 397, 773, 797, 937, 997, 1373, 1997, 3137, 3313, 3373, 3797, 7937, 9137, 9173, 9337, 9397, 13313, 33797, 39397, 79337, 79397, 91373, 91997, 99137, 99173, 99397, 139397, 379397
Offset: 1

Views

Author

Keywords

Comments

Primes p with decimal expansion d_1 d_2 d_3 ... d_k such that the digits d_i are 1, 3, 7, or 9, and deleting 1, 2, 3, up to k-1 leading digits also produces a prime. For example, 9173 is a term because all of 9173, 173, 73, and 3 are primes. - N. J. A. Sloane, Jun 28 2022

Examples

			173 is a term because 173, 73, and 3 are all primes. 371 is not a term because 371 and 1 are not primes. - _N. J. A. Sloane_, Jun 28 2022
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[33000]],SubsetQ[{1,3,7,9},IntegerDigits[#]]&&AllTrue[Mod[#,10^Range[ IntegerLength[ #]-1]],PrimeQ]&] (* Harvey P. Dale, Jun 28 2022 *)
  • PARI
    is(n)=my(d=digits(n)); for(i=1,n, if(!isprime(fromdigits(d[i..n])), return(0))); 1 \\ Charles R Greathouse IV, Jun 25 2017

Extensions

Single-digit terms added by Eric W. Weisstein.