A073633 Numbers k that divide floor((3/2)^k) = A002379(k).
1, 2, 3, 16, 43, 50, 56, 193, 283, 961, 970, 4958, 9439, 10493, 11375, 18552, 57051, 81602, 617287, 917186, 1525995, 5107085, 9162821, 22008620
Offset: 1
Programs
-
Mathematica
t = 1; Do[t = 3t/2; If[ Mod[ Floor[t], n] == 0, Print[n]], {n, 500000}] (* Robert G. Wilson v, Apr 06 2006 *)
-
PARI
a=1;for(n=1,10^6,a*=3;b=shift(a,-n);if(b%n==0,print1(n,","))) \\ Robert Gerbicz, Aug 23 2006
-
PARI
P=1;for(n=1,oo,(P*=3)>>n%n||print1(n",")) \\ M. F. Hasler, Oct 05 2018
-
Python
from gmpy2 import mpz, t_div_2exp, t_mod A073633_list, m = [], mpz(1) for n in range(1,10**9): m *= 3 if t_mod(t_div_2exp(m,n),n) == 0: A073633_list.append(n) # Chai Wah Wu, Mar 30 2020
Extensions
More terms from Michel ten Voorde Jun 20 2003
2 more terms from Ryan Propper, May 05 2006
More terms from Robert Gerbicz, Aug 23 2006
a(22)-a(24) from Chai Wah Wu, Mar 30 2020
Comments