A033044 Sums of distinct powers of 7.
0, 1, 7, 8, 49, 50, 56, 57, 343, 344, 350, 351, 392, 393, 399, 400, 2401, 2402, 2408, 2409, 2450, 2451, 2457, 2458, 2744, 2745, 2751, 2752, 2793, 2794, 2800, 2801, 16807, 16808, 16814, 16815, 16856, 16857, 16863, 16864, 17150, 17151, 17157
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1024
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 45.
Programs
-
Mathematica
t = Table[FromDigits[RealDigits[n, 2], 7], {n, 0, 100}] (* Clark Kimberling, Aug 03 2012 *) FromDigits[#,7]&/@Tuples[{0,1},6] (* Harvey P. Dale, Apr 30 2015 *)
-
PARI
A033044(n,b=7)=subst(Pol(binary(n-1)),'x,b) \\ M. F. Hasler, Feb 01 2016
-
PARI
a(n)=fromdigits(binary(n), 7) \\ Charles R Greathouse IV, Jan 11 2017
Formula
a(n) = Sum_{i=0..m} d(i)*7^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
a(n) = A097253(n)/6.
a(2n) = 7*a(n), a(2n+1) = a(2n)+1.
a(n+1) = Sum_{k>=0} A030308(n,k)*7^k. - Philippe Deléham, Oct 17 2011
G.f.: (x/(1 - x))*Sum_{k>=0} 7^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017
Extensions
Extended by Ray Chandler, Aug 03 2004
Karol Bacik has pointed out that the first three formulas do not match the sequence. - N. J. A. Sloane, Oct 20 2012
Comments