cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A104257 Square array T(a,n) read by antidiagonals: replace 2^i with a^i in binary representation of n, where a,n >= 2.

Original entry on oeis.org

2, 3, 3, 4, 4, 4, 5, 5, 9, 5, 6, 6, 16, 10, 6, 7, 7, 25, 17, 12, 7, 8, 8, 36, 26, 20, 13, 8, 9, 9, 49, 37, 30, 21, 27, 9, 10, 10, 64, 50, 42, 31, 64, 28, 10, 11, 11, 81, 65, 56, 43, 125, 65, 30, 11, 12, 12, 100, 82, 72, 57, 216, 126, 68, 31, 12, 13, 13, 121, 101, 90, 73, 343
Offset: 2

Views

Author

Ralf Stephan, Mar 05 2005

Keywords

Comments

Sums of distinct powers of a. Numbers having only {0,1} in a-ary representation.

Examples

			Array begins:
  2,  3,  4,  5,  6,  7,   8,   9, ...
  3,  4,  9, 10, 12, 13,  27,  28, ...
  4,  5, 16, 17, 20, 21,  64,  65, ...
  5,  6, 25, 26, 30, 31, 125, 126, ...
  6,  7, 36, 37, 42, 43, 216, 217, ...
  7,  8, 49, 50, 56, 57, 343, 344, ...
  8,  9, 64, 65, 72, 73, 512, 513, ...
  9, 10, 81, 82, 90, 91, 729, 730, ...
  ...
		

Crossrefs

Programs

  • Mathematica
    T[, 0] = 0; T[2, n] := n; T[a_, 2] := a;
    T[a_, n_] := T[a, n] = If[EvenQ[n], a T[a, n/2], a T[a, (n-1)/2]+1];
    Table[T[a-n+2, n], {a, 2, 13}, {n, 2, a}] // Flatten (* Jean-François Alcover, Feb 09 2021 *)
  • PARI
    T(a, n) = fromdigits(binary(n), a); \\ Michel Marcus, Aug 19 2022
  • Python
    def T(a, n): return n if n < 2 else (max(a, n) if min(a, n) == 2 else a*T(a, n//2) + n%2)
    print([T(a-n+2, n) for a in range(2, 14) for n in range(2, a+1)]) # Michael S. Branicky, Aug 02 2022
    

Formula

T(a, n) = (1/(a-1))*Sum_{j>=1} floor((n+2^(j-1))/2^j) * ((a-2)*a^(j-1) + 1).
T(a, n) = (1/(a-1))*Sum_{j=1..n} ((a-2)*a^A007814(j) + 1).
G.f. of a-th row: (1/(1-x)) * Sum_{k>=0} a^k*x^2^k/(1+x^2^k).
Recurrence: T(a, 2n) = a*T(a, n), T(a, 2n+1) = a*T(a, n) + 1, T(a, 0) = 0.

A077721 Primes which can be expressed as sum of distinct powers of 7.

Original entry on oeis.org

7, 2801, 17207, 19559, 120401, 134513, 134807, 137201, 840743, 842759, 842801, 941249, 943601, 958007, 958049, 958343, 960793, 5782001, 5784409, 5899307, 5899601, 5899657, 5901659, 6591089, 6607903, 6706393, 6708787, 6722801, 6722857, 6723193
Offset: 1

Views

Author

Amarnath Murthy, Nov 19 2002

Keywords

Comments

Primes whose base 7 representation contains only zeros and 1's.

Crossrefs

Programs

  • Maple
    pos := 0:for i from 1 to 4000 do b := convert(i,base,2); s := sum(b[j]*7^(j-1),j=1..nops(b)): if(isprime(s)) then pos := pos+1:a[pos] := s:fi: od:seq(a[j],j=1..pos);
  • Mathematica
    Select[Prime[Range[10^6]], Max[IntegerDigits[#, 7]]<=1 &] (* Vincenzo Librandi, Sep 07 2018 *)

Extensions

More terms from Sascha Kurz, Jan 03 2003

A063012 Sum of distinct powers of 20; i.e., numbers with digits in {0,1} base 20; i.e., write n in base 2 and read as if written in base 20.

Original entry on oeis.org

0, 1, 20, 21, 400, 401, 420, 421, 8000, 8001, 8020, 8021, 8400, 8401, 8420, 8421, 160000, 160001, 160020, 160021, 160400, 160401, 160420, 160421, 168000, 168001, 168020, 168021, 168400, 168401, 168420, 168421, 3200000, 3200001, 3200020, 3200021, 3200400, 3200401
Offset: 0

Views

Author

Henry Bottomley, Jul 04 2001

Keywords

Examples

			a(5) = 401 since 5 written in base 2 is 101 so a(5) = 1*20^2 + 0*20^1 + 1*20^0 = 400 + 0 + 1 = 401.
		

Crossrefs

A063013 is similar in a different way.

Programs

  • Maple
    a:= proc(n) `if`(n<2, n, irem(n, 2, 'r')+20*a(r)) end:
    seq(a(n), n=0..37);  # Alois P. Heinz, Apr 04 2025
  • Mathematica
    Table[FromDigits[IntegerDigits[n,2],20],{n,0,40}] (* Harvey P. Dale, Jul 21 2014 *)
  • PARI
    baseE(x, b)= { local(d, e, f); e=0; f=1; while (x>0, d=x-b*(x\b); x\=b; e+=d*f; f*=10); return(e) }
    baseI(x, b)= { local(d, e, f); e=0; f=1; while (x>0, d=x-10*(x\10); x\=10; e+=d*f; f*=b); return(e) }
    { for (n=0, 1000, write("b063012.txt", n, " ", baseI(baseE(n, 2), 20)) ) } \\ Harry J. Smith, Aug 15 2009
    
  • Python
    def A063012(n): return int(bin(n)[2:],20) # Chai Wah Wu, Apr 04 2025

Formula

a(n) = a(n-2^floor(log_2(n))) + 20^floor(log_2(n)). a(2n) = 20*a(n); a(2n+1) = a(2n)+1 = 20*a(n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*A009964(k). - Philippe Deléham, Oct 15 2011
G.f.: (1/(1 - x))*Sum_{k>=0} 20^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017

Extensions

Edited by Charles R Greathouse IV, Aug 02 2010

A037412 Positive numbers having the same set of digits in base 2 and base 7.

Original entry on oeis.org

1, 49, 50, 56, 343, 344, 350, 351, 392, 393, 399, 2401, 2402, 2408, 2409, 2450, 2451, 2457, 2458, 2744, 2745, 2751, 2752, 2793, 2794, 2800, 16807, 16808, 16814, 16815, 16856, 16857, 16863, 16864, 17150, 17151, 17157, 17158
Offset: 1

Views

Author

Keywords

Crossrefs

Subset of A033044.

Programs

  • PARI
    isok(n) = Set(digits(n, 2)) == Set(digits(n, 7)); \\ John Cerkan, Jan 13 2017

Extensions

Name edited by John Cerkan, Jan 14 2017

A097253 Numbers whose set of base 7 digits is {0,6}.

Original entry on oeis.org

0, 6, 42, 48, 294, 300, 336, 342, 2058, 2064, 2100, 2106, 2352, 2358, 2394, 2400, 14406, 14412, 14448, 14454, 14700, 14706, 14742, 14748, 16464, 16470, 16506, 16512, 16758, 16764, 16800, 16806, 100842, 100848, 100884, 100890, 101136
Offset: 1

Views

Author

Ray Chandler, Aug 03 2004

Keywords

Comments

n such that there exists a permutation p_1, ..., p_n of 1, ..., n such that i + p_i is a power of 7 for every i.

Crossrefs

Programs

  • Magma
    [n: n in [0..200000] | Set(IntegerToSequence(n, 7)) subset {0, 6}]; // Vincenzo Librandi, May 25 2012
    
  • Mathematica
    fQ[n_]:=Union@Join[{0,6},IntegerDigits[n,7]]=={0,6};Select[Range[0,140000],fQ] (* Vincenzo Librandi, May 25 2012 *)
    FromDigits[#,7]&/@Tuples[{0,6},6] (* This program is several thousand times faster than the first program, above. *) (* Harvey P. Dale, Aug 12 2023 *)
  • Maxima
    a[0]:0$ a[n]:=7*a[floor(n/2)]+3*(1-(-1)^n)$ makelist(a[n], n, 0, 36); /* Bruno Berselli, May 25 2012 */

Formula

a(n) = 6*A033044(n).
a(2n) = 7*a(n), a(2n+1) = a(2n)+6.

Extensions

Offset corrected by Arkadiusz Wesolowski, Nov 09 2013

A341907 T(n, k) is the result of replacing 2^e with k^e in the binary expansion of n; square array T(n, k) read by antidiagonals upwards, n, k >= 0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 2, 2, 1, 0, 1, 1, 3, 3, 1, 0, 0, 2, 4, 4, 4, 1, 0, 1, 2, 5, 9, 5, 5, 1, 0, 0, 3, 6, 10, 16, 6, 6, 1, 0, 1, 1, 7, 12, 17, 25, 7, 7, 1, 0, 0, 2, 8, 13, 20, 26, 36, 8, 8, 1, 0, 1, 2, 9, 27, 21, 30, 37, 49, 9, 9, 1, 0, 0, 3, 10, 28, 64, 31, 42, 50, 64, 10, 10, 1, 0
Offset: 0

Views

Author

Rémy Sigrist, Jun 04 2021

Keywords

Comments

For any n >= 0, the n-th row, k -> T(n, k), corresponds to a polynomial in k with coefficients in {0, 1}.
For any k > 1, the k-th column, n -> T(n, k), corresponds to sums of distinct powers of k.

Examples

			Array T(n, k) begins:
  n\k|  0  1   2   3   4    5    6    7    8    9    10    11    12
  ---+-------------------------------------------------------------
    0|  0  0   0   0   0    0    0    0    0    0     0     0     0
    1|  1  1   1   1   1    1    1    1    1    1     1     1     1
    2|  0  1   2   3   4    5    6    7    8    9    10    11    12
    3|  1  2   3   4   5    6    7    8    9   10    11    12    13
    4|  0  1   4   9  16   25   36   49   64   81   100   121   144
    5|  1  2   5  10  17   26   37   50   65   82   101   122   145
    6|  0  2   6  12  20   30   42   56   72   90   110   132   156
    7|  1  3   7  13  21   31   43   57   73   91   111   133   157
    8|  0  1   8  27  64  125  216  343  512  729  1000  1331  1728
    9|  1  2   9  28  65  126  217  344  513  730  1001  1332  1729
   10|  0  2  10  30  68  130  222  350  520  738  1010  1342  1740
   11|  1  3  11  31  69  131  223  351  521  739  1011  1343  1741
   12|  0  2  12  36  80  150  252  392  576  810  1100  1452  1872
		

Crossrefs

Programs

  • PARI
    T(n,k) = { my (v=0, e); while (n, n-=2^e=valuation(n,2); v+=k^e); v }

Formula

T(n, n) = A104258(n).
T(n, 0) = A000035(n).
T(n, 1) = A000120(n).
T(n, 2) = n.
T(n, 3) = A005836(n).
T(n, 4) = A000695(n).
T(n, 5) = A033042(n).
T(n, 6) = A033043(n).
T(n, 7) = A033044(n).
T(n, 8) = A033045(n).
T(n, 9) = A033046(n).
T(n, 10) = A007088(n).
T(n, 11) = A033047(n).
T(n, 12) = A033048(n).
T(n, 13) = A033049(n).
T(0, k) = 0.
T(1, k) = 1.
T(2, k) = k.
T(3, k) = k + 1.
T(4, k) = k^2.
T(5, k) = k^2 + 1 = A002522(k).
T(6, k) = k^2 + k = A002378(k).
T(7, k) = k^2 + k + 1 = A002061(k).
T(8, k) = k^3.
T(9, k) = k^3 + 1 = A001093(k).
T(10, k) = k^3 + k = A034262(k).
T(11, k) = k^3 + k + 1 = A071568(k).
T(12, k) = k^3 + k^2 = A011379(k).
T(13, k) = k^3 + k^2 + 1 = A098547(k).
T(14, k) = k^3 + k^2 + k = A027444(k).
T(15, k) = k^3 + k^2 + k + 1 = A053698(k).
T(16, k) = k^4 = A000583(k).
T(17, k) = k^4 + 1 = A002523(k).
T(m + n, k) = T(m, k) + T(n, k) when m AND n = 0 (where AND denotes the bitwise AND operator).

A203580 a(n) = Sum{d(i)*2^i: i=0,1,...,m}, where Sum{d(i)*7^i: i=0,1,...,m}=n, d(i)∈{0,1,...,6}.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 2, 3, 4, 5, 6, 7, 8, 4, 5, 6, 7, 8, 9, 10, 6, 7, 8, 9, 10, 11, 12, 8, 9, 10, 11, 12, 13, 14, 10, 11, 12, 13, 14, 15, 16, 12, 13, 14, 15, 16, 17, 18, 4, 5, 6, 7, 8, 9, 10, 6, 7, 8, 9, 10, 11, 12, 8, 9, 10, 11, 12, 13, 14, 10, 11, 12, 13, 14
Offset: 0

Views

Author

Karol Bacik, Jan 03 2012

Keywords

Comments

Change-of-base sequence 7->2.

Crossrefs

Cf. A033044.

Programs

  • Mathematica
    t = Table[FromDigits[RealDigits[n, 7], 2], {n, 0, 100}] (* Clark Kimberling, Aug 03 2012 *)

Formula

a(0)=0, a(n)=2*a(n/7) if n==0 (mod 7), a(n)=a(n-1)+1 otherwise.
Showing 1-7 of 7 results.