A033045 Sums of distinct powers of 8.
0, 1, 8, 9, 64, 65, 72, 73, 512, 513, 520, 521, 576, 577, 584, 585, 4096, 4097, 4104, 4105, 4160, 4161, 4168, 4169, 4608, 4609, 4616, 4617, 4672, 4673, 4680, 4681, 32768, 32769, 32776, 32777, 32832, 32833, 32840, 32841, 33280, 33281, 33288
Offset: 0
Examples
a(7)=72 because 72_10 = 110_8.
Links
- David A. Corneth, Table of n, a(n) for n = 0..9999 (first 1024 terms from T. D. Noe)
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 45.
- Michael Penn, "almost" a generating function..., YouTube video, 2020.
Programs
-
PARI
A033045(n,b=8)=subst(Pol(binary(n)),'x,b) \\ M. F. Hasler, Feb 01 2016
-
PARI
a(n) = fromdigits(binary(n), 8) \\ David A. Corneth, Dec 17 2020
Formula
a(n) = Sum_{i=0..m} d(i)*8^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
a(n) = A097254(n)/7.
a(2n) = 8*a(n), a(2n+1) = a(2n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*8^k. - Philippe Deléham, Oct 19 2011
G.f.: (1/(1 - x))*Sum_{k>=0} 8^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017
Extensions
More terms from Patrick De Geest, Dec 23 2000
Comments