cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033050 Numbers whose set of base 14 digits is {0,1}.

Original entry on oeis.org

0, 1, 14, 15, 196, 197, 210, 211, 2744, 2745, 2758, 2759, 2940, 2941, 2954, 2955, 38416, 38417, 38430, 38431, 38612, 38613, 38626, 38627, 41160, 41161, 41174, 41175, 41356, 41357, 41370, 41371, 537824, 537825, 537838, 537839, 538020
Offset: 0

Views

Author

Keywords

Comments

Sums of distinct powers of 14.
The base-14 digits may comprise zero, one, or both. - Harvey P. Dale, May 12 2014

Crossrefs

Row 13 of array A104257.

Programs

  • Mathematica
    Select[Range[0,540000],Max[IntegerDigits[#,14]]<2&] (* Harvey P. Dale, May 12 2014 *)
    FromDigits[#,14]&/@Tuples[{0,1},6] (* Harvey P. Dale, Jun 18 2021 *)
  • PARI
    A033050(n,b=14)=subst(Pol(binary(n)),'x,b) \\ M. F. Hasler, Feb 01 2016

Formula

a(n) = Sum_{i=0..m} d(i)*14^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
a(n) = A097260(n)/13.
a(2n) = 14*a(n), a(2n+1) = a(2n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*14^k. - Philippe Deléham, Oct 20 2011
G.f.: (1/(1 - x))*Sum_{k>=0} 14^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017

Extensions

Extended by Ray Chandler, Aug 03 2004