cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033114 Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.

Original entry on oeis.org

1, 4, 17, 68, 273, 1092, 4369, 17476, 69905, 279620, 1118481, 4473924, 17895697, 71582788, 286331153, 1145324612, 4581298449, 18325193796, 73300775185, 293203100740, 1172812402961, 4691249611844, 18764998447377, 75059993789508
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = floor(4^(n+1)/15) = 4^(n+1)/15 - 1/6 - (-1)^n/10. - Benoit Cloitre, Apr 18 2003
G.f.: 1/((1-x)*(1+x)*(1-4*x)); a(n) = 3*a(n-1) + 4*a(n-2)+1. Partial sum of A015521. - Paul Barry, Nov 12 2003
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k); a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(j+k)*4^j. - Paul Barry, Nov 12 2003
Convolution of A000302 and A059841 (4^n and periodic{1, 0}). a(n) = Sum_{k=0..n} (1 + (-1)^(n-k))*4^k/2. - Paul Barry, Jul 19 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*(J(2*k+1)-1)/2, J(n)=A001045(n). - Paul Barry, Mar 06 2008
a(n) = round((8*4^n-5)/30) = ceiling((4*4^n-4)/15) = round((4*4^n-4)/15); a(n) = a(n-2) + 4^(n-1), n > 1. - Mircea Merca, Dec 28 2010
a(n) = A117616(n)/2. - J. M. Bergot, Apr 22 2015
a(n) = A043291(n)/3; a(n+1) = 4*a(n) + A000035(n). - Robert Israel, Apr 22 2015
a(n)+a(n+1) = A002450(n+1). - R. J. Mathar, Feb 27 2019