A033182 Number of pairs (p,q) such that 5*p + 6*q = n.
1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vincenzo Librandi)
- A. V. Kitaev and A. Vartanian, Algebroid Solutions of the Degenerate Third Painlevé Equation for Vanishing Formal Monodromy Parameter, arXiv:2304.05671 [math.CA], 2023. See p. 20.
Crossrefs
Cf. A033183.
Programs
-
Magma
[Floor(n/5)-Floor((n-1)/6): n in [0..100]]; // Vincenzo Librandi, Oct 13 2013
-
Mathematica
nn = 86; t = Table[0, {nn}]; Do[m = 5*p + 6*q; If[0 < m <= nn, t[[m]]++], {p, 0, nn/5}, {q, 0, nn/6}]; Join[{1}, t] (* T. D. Noe, Oct 07 2013 *)
Formula
a(n) = [ 5*n/6 ] + 1 + [ -4*n/5 ].
a(n) = floor(n/5) - floor((n-1)/6). - Mircea Merca, Oct 11 2013
Comments