cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033182 Number of pairs (p,q) such that 5*p + 6*q = n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Michel Tixier (tixier(AT)dyadel.net)

Keywords

Comments

Number of partitions of n into parts 5 and 6. - Seiichi Manyama, Jun 14 2017

Crossrefs

Cf. A033183.

Programs

  • Magma
    [Floor(n/5)-Floor((n-1)/6): n in [0..100]]; // Vincenzo Librandi, Oct 13 2013
  • Mathematica
    nn = 86; t = Table[0, {nn}]; Do[m = 5*p + 6*q; If[0 < m <= nn, t[[m]]++], {p, 0, nn/5}, {q, 0, nn/6}]; Join[{1}, t] (* T. D. Noe, Oct 07 2013 *)

Formula

a(n) = [ 5*n/6 ] + 1 + [ -4*n/5 ].
a(n) = floor(n/5) - floor((n-1)/6). - Mircea Merca, Oct 11 2013