A033185 Rooted tree triangle read by rows: a(n,k) = number of forests with n nodes and k rooted trees.
1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 6, 3, 1, 1, 20, 16, 7, 3, 1, 1, 48, 37, 18, 7, 3, 1, 1, 115, 96, 44, 19, 7, 3, 1, 1, 286, 239, 117, 46, 19, 7, 3, 1, 1, 719, 622, 299, 124, 47, 19, 7, 3, 1, 1, 1842, 1607, 793, 320, 126, 47, 19, 7, 3, 1, 1, 4766, 4235, 2095, 858, 327, 127, 47, 19, 7, 3, 1, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 2, 1, 1; 4, 3, 1, 1; 9, 6, 3, 1, 1; 20, 16, 7, 3, 1, 1; 48, 37, 18, 7, 3, 1, 1; 115, 96, 44, 19, 7, 3, 1, 1; 286, 239, 117, 46, 19, 7, 3, 1, 1; 719, 622, 299, 124, 47, 19, 7, 3, 1, 1; 1842, 1607, 793, 320, 126, 47, 19, 7, 3, 1, 1;
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- W. Bomfim, Bijection between rooted forests and multigraphs without cycles except one loop in each connected component.
- R. J. Mathar, Topologically distinct sets of non-intersecting circles in the plane, arXiv:1603.00077 [math.CO] (2016), Table 2.
- Index entries for sequences related to rooted trees
- Index entries for sequences related to trees
Crossrefs
Programs
-
Maple
with(numtheory): t:= proc(n) option remember; local d, j; `if` (n<=1, n, (add(add(d*t(d), d=divisors(j))*t(n-j), j=1..n-1))/(n-1)) end: b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1, `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j) * binomial(t(i)+j-1, j), j=0..min(n/i, p))))) end: a:= (n, k)-> b(n, n, k): seq(seq(a(n, k), k=1..n), n=1..14); # Alois P. Heinz, Aug 20 2012
-
Mathematica
nn=10;f[x_]:=Sum[a[n]x^n,{n,0,nn}];sol=SolveAlways[0 == Series[f[x]-x Product[1/(1-x^i)^a[i],{i,1,nn}],{x,0,nn}],x];a[0]=0;g=Table[a[n],{n,1,nn}]/.sol//Flatten;h[list_]:=Select[list,#>0&];Map[h,Drop[CoefficientList[Series[x Product[1/(1-y x^i)^g[[i]],{i,1,nn}],{x,0,nn}],{x,y}],2]]//Grid (* Geoffrey Critzer, Nov 17 2012 *) t[1] = 1; t[n_] := t[n] = Module[{d, j}, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n-j], {j, 1, n-1}]/(n-1)]; b[1, 1, 1] = 1; b[n_, i_, p_] := b[n, i, p] = If[p>n, 0, If[n == 0, 1, If[Min[i, p]<1, 0, Sum[b[n-i*j, i-1, p-j]*Binomial[t[i]+j-1, j], {j, 0, Min[n/i, p]}]]]]; a[n_, k_] := b[n, n, k]; Table[a[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)
Formula
G.f.: 1/Product_{i>=1} (1-x*y^i)^A000081(i). - Vladeta Jovovic, Apr 28 2005
a(n, k) = sum over the partitions of n, 1M1 + 2M2 + ... + nMn, with exactly k parts, of Product_{i=1..n} binomial(A000081(i)+Mi-1, Mi). - Washington Bomfim, May 12 2005
Comments