A033200 Primes congruent to {1, 3} (mod 8); or, odd primes of form x^2 + 2*y^2.
3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313, 331, 337, 347, 353, 379, 401, 409, 419, 433, 443, 449, 457, 467, 491, 499
Offset: 1
Examples
Since 11 is prime and 11 == 3 (mod 8), 11 is in the sequence. (Also 11 = 3^2 + 2 * 1^2 = (3 + sqrt(-2))(3 - sqrt(-2)).) Since 17 is prime and 17 == 1 (mod 8), 17 is in the sequence.
References
- David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 7.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from T. D. Noe]
- G. Frei, Euler's convenient numbers, Math. Intell. Vol. 7 No. 3 (1985), p. 56.
- Zak Seidov, Table of n, a(n), x and y for n = 1..1000
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- Paul Yiu, CRUX, Problem 2331, Proposed by Paul Yiu
- Paul Yiu and Jill S. Taylor, CRUX, Problem 2331, Solution pp 185-186
- Index to sequences related to decomposition of primes in quadratic fields
Crossrefs
Cf. A033203.
Programs
-
Haskell
a033200 n = a033200_list !! (n-1) a033200_list = filter ((== 1) . a010051) a047471_list -- Reinhard Zumkeller, Dec 29 2012
-
Magma
[p: p in PrimesUpTo(600) | p mod 8 in [1, 3]]; // Vincenzo Librandi, Aug 04 2012
-
Mathematica
Rest[QuadPrimes2[1, 0, 2, 10000]] (* see A106856 *) Select[Prime[Range[200]],MemberQ[{1,3},Mod[#,8]]&] (* Harvey P. Dale, Jun 09 2017 *)
-
PARI
is(n)=n%8<4 && n%2 && isprime(n) \\ Charles R Greathouse IV, Feb 09 2017
Formula
a(n) = A033203(n+1). - Zak Seidov, May 29 2014
L(-2, a(n)) = +1, n >= 1, with the Legendre symbol L. -Wolfdieter Lang, Jul 24 2024
Comments