A033294 Squares which when written backwards remain square (final 0's excluded).
1, 4, 9, 121, 144, 169, 441, 484, 676, 961, 1089, 9801, 10201, 10404, 10609, 12321, 12544, 12769, 14641, 14884, 40401, 40804, 44521, 44944, 48841, 69696, 90601, 94249, 96721, 698896, 1002001, 1004004, 1006009, 1022121, 1024144, 1026169
Offset: 1
Examples
144 = 12 * 12 is a term because 441 = 21 * 21.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Reinhard Zumkeller)
- Index entry for sequences related to reversing digits of squares
Programs
-
Haskell
a033294 n = a033294_list !! (n-1) a033294_list = filter chi a000290_list where chi m = m `mod` 10 > 0 && head ds `elem` [1,4,5,6,9] && a010052 (foldl (\v d -> 10 * v + d) 0 ds) == 1 where ds = unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 10) m -- Reinhard Zumkeller, Jan 19 2012
-
Mathematica
Select[Range[1100]^2,Mod[#,10]!=0&&IntegerQ[Sqrt[FromDigits[Reverse[ IntegerDigits[ #]]]]]&] (* Harvey P. Dale, Oct 28 2013 *)
-
Python
from math import isqrt from itertools import count, islice def sqr(n): return isqrt(n)**2 == n def agen(): yield from (k*k for k in count(1) if k%10 and sqr(int(str(k*k)[::-1]))) print(list(islice(agen(), 36))) # Michael S. Branicky, May 21 2022
Extensions
More terms from Erich Friedman
Initial 0 removed and offset changed by Reinhard Zumkeller, Jan 19 2012
Comments