A035090 Non-palindromic squares which when written backwards remain square (and still have the same number of digits).
144, 169, 441, 961, 1089, 9801, 10404, 10609, 12544, 12769, 14884, 40401, 44521, 48841, 90601, 96721, 1004004, 1006009, 1022121, 1024144, 1026169, 1042441, 1044484, 1062961, 1212201, 1214404, 1216609, 1236544, 1238769, 1256641
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..798
- Patrick De Geest, Palindromic Squares in bases 2 to 17
- Index entry for sequences related to reversing digits of squares
Crossrefs
Programs
-
Maple
rev:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: filter:= proc(n) local t; if n mod 10 = 0 then return false fi; t:= rev(n); t <> n and issqr(t) end proc: select(filter, [seq(n^2, n=1..10^5)]); # Robert Israel, Sep 20 2015
-
Mathematica
Select[Range[1200]^2,!PalindromeQ[#]&&IntegerLength[#]==IntegerLength[ IntegerReverse[ #]] && IntegerQ[Sqrt[IntegerReverse[#]]]&] (* Harvey P. Dale, Jul 19 2023 *)
Formula
a(n) = A035123(n)^2. - R. J. Mathar, Jan 25 2017
Comments