cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033303 Expansion of (1 + x)/(1 - 2*x - x^2 + x^3).

Original entry on oeis.org

1, 3, 7, 16, 36, 81, 182, 409, 919, 2065, 4640, 10426, 23427, 52640, 118281, 265775, 597191, 1341876, 3015168, 6775021, 15223334, 34206521, 76861355, 172705897, 388066628, 871977798, 1959316327
Offset: 0

Views

Author

Keywords

Comments

Also the number of one-sided n-step prudent walks that avoid 3 or more consecutive east steps. - Shanzhen Gao, Apr 27 2011
Equivalently, number of ternary strings of length n with subwords (0,0) and (1,2) not allowed. - Olivier Gérard, Aug 28 2012
First differences are in A052534.
a(n) is the number of vertices of the Minkowski sum of n simplices with vertices e_(i+1), e_(i+2), e_(i+3) for i=0,...,n-1, where e_i is a standard basis vector. - Alejandro H. Morales, Oct 05 2022

References

  • R. P. Stanley, Enumerative Combinatorics I, p. 244.

Programs

  • Mathematica
    CoefficientList[Series[(1 + x)/(1 - 2*x - x^2 + x^3), {x, 0, 100}], x] (* Vincenzo Librandi, Oct 20 2012 *)
    LinearRecurrence[{2,1,-1},{1,3,7},40] (* Harvey P. Dale, Oct 31 2013 *)
  • Maxima
    h(n):=sum(sum(binomial(k,j)*binomial(j,n-3*k+2*j)*2^(3*k-n-j)*(-1)^(k-j),j,0,k),k,1,n); a(n):=if n=0 then 1 else if n=2 then h(n) else h(n)+h(n-1); /* Vladimir Kruchinin, Sep 09 2010 */
    
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,1,2]^n*[1;3;7])[1,1] \\ Charles R Greathouse IV, Feb 19 2017

Formula

a(0)=1, a(1)=h(n), and a(n) = h(n) + h(n-1) for n >= 2, where h(n) = Sum_{k=1..n} Sum_{j=0..k} binomial(k, j) * binomial(j, n-3*k+2*j) * 2^(3*k-n-j) * (-1)^(k-j). - Vladimir Kruchinin, Sep 09 2010
a(0)=1, a(1)=3, a(2)=7, a(n) = 2*a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Oct 31 2013
a(n) = A006054(n+1)+A006054(n+2). - R. J. Mathar, Jul 08 2022