A259776
Number A(n,k) of permutations p of [n] with no fixed points and displacement of elements restricted by k: 1 <= |p(i)-i| <= k, square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 4, 0, 0, 1, 0, 1, 2, 9, 6, 1, 0, 1, 0, 1, 2, 9, 24, 13, 0, 0, 1, 0, 1, 2, 9, 44, 57, 24, 1, 0, 1, 0, 1, 2, 9, 44, 168, 140, 45, 0, 0, 1, 0, 1, 2, 9, 44, 265, 536, 376, 84, 1, 0
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 0, 0, 0, 0, 0, 0, 0, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 0, 2, 2, 2, 2, 2, 2, ...
0, 1, 4, 9, 9, 9, 9, 9, ...
0, 0, 6, 24, 44, 44, 44, 44, ...
0, 1, 13, 57, 168, 265, 265, 265, ...
0, 0, 24, 140, 536, 1280, 1854, 1854, ...
Columns k=0-10 give:
A000007,
A059841,
A033305,
A079997,
A259777,
A259778,
A259779,
A259780,
A259781,
A259782,
A259783.
-
b:= proc(n, s, k) option remember; `if`(n=0, 1, `if`(n+k in s,
b(n-1, (s minus {n+k}) union `if`(n-k>1, {n-k-1}, {}), k),
add(`if`(j=n, 0, b(n-1, (s minus {j}) union
`if`(n-k>1, {n-k-1}, {}), k)), j=s)))
end:
A:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), b(n, {$max(1, n-k)..n}, k)):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
b[n_, s_, k_] := b[n, s, k] = If[n==0, 1, If[MemberQ[s, n+k], b[n-1, Join[s ~Complement~ {n+k}] ~Union~ If[n-k>1, {n-k-1}, {}], k], Sum[If[j==n, 0, b[n -1, Join[s ~Complement~ {j}] ~Union~ If[n-k>1, {n-k-1}, {}], k]], {j, s}]] ];
A[n_, k_] := If[k == 0, If[n == 0, 1, 0], b[n, Range[Max[1, n-k], n], k]];
Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 29 2017, translated from Maple *)
A260074
Number of permutations p of [n] with no fixed points and cyclic displacement of elements restricted by two: p(i)<>i and (i-p(i) mod n <= 2 or p(i)-i mod n <= 2).
Original entry on oeis.org
1, 0, 1, 2, 9, 44, 80, 144, 260, 448, 808, 1456, 2640, 4788, 8744, 16016, 29444, 54268, 100304, 185824, 344996, 641664, 1195400, 2230176, 4165904, 7790244, 14581640, 27316240, 51209124, 96060300, 180291280, 338538480, 635940356, 1195021888, 2246289704
Offset: 0
a(6) = 80: 214365, 214635, 215364, 215634, 231564, 231645, 234561, 234615, 235614, 235641, 241365, 241635, 245361, 245631, 261345, 261534, 264315, 264531, 265314, 265341, 312564, 312645, 314265, 314562, 315264, 315642, 341265, 341562, 342561, 342615, 345261, 345612, 361245, 361542, 362514, 362541, 364215, 364512, 365214, 365241, 512364, 512634, 514362, 514632, 531264, 531642, 532614, 532641, 534261, 534612, 541362, 541632, 542361, 542631, 561234, 561342, 562314, 562341, 564231, 564312, 612345, 612534, 614235, 614532, 615234, 615342, 631245, 631542, 632514, 632541, 634215, 634512, 635214, 635241, 641235, 641532, 642315, 642531, 645231, 645312.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,1,-1,-4,3,-1,2,1,-1).
-
gf:= -(27*x^14 -13*x^13 -61*x^12 -4*x^11 -70*x^10 +50*x^9 +44*x^8 +10*x^7 +38*x^6 -24*x^5 -6*x^4 +2*x^3 -3*x^2 +3*x-1) / ((x-1) *(x+1) *(x^2+1) *(x^2+x-1) *(x^4-2*x^3+x^2-2*x+1)):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..50);
-
LinearRecurrence[{3,-2,1,-1,-4,3,-1,2,1,-1},{1,0,1,2,9,44,80,144,260,448,808,1456,2640,4788,8744},50] (* Harvey P. Dale, Jul 15 2019 *)
A188981
T(n,k)=Number of nXk array permutations with each element moved but moved no more than a city block distance of two.
Original entry on oeis.org
0, 1, 1, 2, 9, 2, 4, 116, 116, 4, 6, 900, 7264, 900, 6, 13, 7836, 295264, 295264, 7836, 13, 24, 71865, 12838276, 54113236, 12838276, 71865, 24, 45, 640513, 577290185, 10523263424, 10523263424, 577290185, 640513, 45, 84, 5706113, 25631148992
Offset: 1
Some solutions for 5X3
..1..0..4....1..0..4....1..0..4....1..0..4....1..0..4....1..0..4....1..0..4
..6..2.11....5..6..7....6..8..2....6..8..2....5..3.11....6..5..8....5..2..3
.12..3..5...12..3..2....3.11.14...12..9..5....8.10..2....9..3..2....8.10.14
.13..9..7...11.13..9...13.12..5....3..7.10...13..7..9...10.14..7...11..6.13
.14.10..8...14.10..8....9..7.10...14.11.13....6.14.12...13.12.11....9..7.12
A376743
Number of permutations (p(1),p(2),...,p(n)) of (1,2,...,n) such that p(i)-i is in {-2,-1,4} for all i=1,...,n.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 5, 5, 6, 8, 11, 15, 25, 35, 46, 61, 85, 125, 175, 245, 341, 470, 650, 925, 1300, 1810, 2521, 3520, 4915, 6880, 9640, 13476, 18801, 26251, 36721, 51346, 71776, 100335, 140210, 195886, 273813, 382821, 535105, 747850, 1045220
Offset: 0
- D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), North-Holland, Amsterdam, 1970, pp. 755-770.
- Michael A. Allen and Kenneth Edwards, Connections between two classes of generalized Fibonacci numbers squared and permanents of (0,1) Toeplitz matrices, Lin. Multilin. Alg. 72:13 (2024) 2091-2103.
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics, 4(1) (2010), 119-135.
- Kenneth Edwards and Michael A. Allen, Strongly restricted permutations and tiling with fences, Discrete Applied Mathematics, 187 (2015), 82-90.
- Index entries for linear recurrences with constant coefficients, signature (0,0,1,1,1,2,1,0,-2,-2,0,-1,0,0,1).
See comments for other sequences related to strongly restricted permutations.
-
CoefficientList[Series[(1 - x^3 - x^4 - x^6 + x^9)/(1 - x^3 - x^4 - x^5 - 2*x^6 - x^7 + 2*x^9 + 2*x^10 + x^12 - x^15),{x,0,49}],x]
LinearRecurrence[{0, 0, 1, 1, 1, 2, 1, 0, -2, -2, 0, -1, 0, 0, 1}, {1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 5, 5, 6, 8}, 50]
A183324
Number of nX3 binary arrays with each 1 adjacent to exactly two other 1s.
Original entry on oeis.org
1, 3, 6, 10, 19, 37, 69, 129, 244, 460, 865, 1629, 3069, 5779, 10882, 20494, 38595, 72681, 136873, 257761, 485416, 914136, 1721505, 3241945, 6105241, 11497411, 21651966, 40775058, 76787731, 144606925, 272324269, 512842017, 965785884
Offset: 1
All solutions for 4X3
..0..0..0....0..0..0....1..1..1....0..0..0....0..0..0....0..0..0....1..1..0
..0..0..0....0..0..0....1..0..1....1..1..1....0..1..1....1..1..0....1..1..0
..1..1..0....0..0..0....1..0..1....1..0..1....0..1..1....1..1..0....0..0..0
..1..1..0....0..0..0....1..1..1....1..1..1....0..0..0....0..0..0....0..0..0
...
..0..0..0....0..1..1....1..1..1
..0..0..0....0..1..1....1..0..1
..0..1..1....0..0..0....1..1..1
..0..1..1....0..0..0....0..0..0
A321048
Number of permutations of [n] with no fixed points where the maximal displacement of an element equals two.
Original entry on oeis.org
0, 2, 3, 6, 12, 24, 44, 84, 159, 300, 564, 1064, 2004, 3774, 7107, 13386, 25208, 47472, 89400, 168360, 317055, 597080, 1124424, 2117520, 3987720, 7509690, 14142275, 26632782, 50154948, 94451976, 177872292, 334969724, 630816159, 1187955204, 2237161404
Offset: 2
A321049
Number of permutations of [n] with no fixed points where the maximal displacement of an element equals three.
Original entry on oeis.org
0, 5, 18, 44, 116, 331, 932, 2532, 6720, 17804, 47280, 125460, 331736, 874973, 2305750, 6075184, 16001968, 42130767, 110885496, 291792264, 767776064, 2020061968, 5314529928, 13981117152, 36779372688, 96751538581, 254510051546, 669494097852, 1761102380100
Offset: 3
- Alois P. Heinz, Table of n, a(n) for n = 3..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-3,6,-7,-11,-14,0,16,18,6,-7,1,-2,1,-2,-1,1).
Showing 1-7 of 7 results.
Comments