A260081
Number of permutations p of [n] with no fixed points and cyclic displacement of elements restricted by three: p(i)<>i and (i-p(i) mod n <= 3 or p(i)-i mod n <= 3).
Original entry on oeis.org
1, 0, 1, 2, 9, 44, 265, 1854, 4752, 12072, 30500, 76038, 190656, 481318, 1224852, 3117528, 7944464, 20283046, 51912320, 133129054, 341972624, 879678624, 2266157892, 5846150862, 15101728320, 39058470566, 101135401556, 262158219552, 680253580304, 1766843951390
Offset: 0
a(8) = 4752: 21436587, 21436785, 21436857, 21437586, ..., 87653421, 87654123, 87654312, 87654321.
-
a:= n-> `if`(n=0, 1, LinearAlgebra[Permanent](Matrix(n, (i, j)->
`if`(i<>j and (i-j mod n<=3 or j-i mod n<=3), 1, 0)))):
seq(a(n), n=0..15);
-
a[n_] := If[n == 0, 1, Permanent[Table[If[i != j && (Mod[i - j, n] <= 3 || Mod[j - i, n] <= 3), 1, 0], {i, 1, n}, {j, 1, n}]]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jan 06 2016, adapted from Maple *)
A257953
Number of permutations p of [n] with no fixed points and cyclic displacement of elements restricted by nine: p(i)<>i and (i-p(i) mod n <= 9 or p(i)-i mod n <= 9).
Original entry on oeis.org
1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841, 2290792932, 32071101049, 481066515734, 7697064251745, 130850092279664, 2355301661033953, 44750731559645106, 312426715251262464, 2178674876680100744, 15178362413058474596, 105663183116236278362
Offset: 0
-
a:= n-> `if`(n=0, 1, LinearAlgebra[Permanent](Matrix(n, (i, j)->
`if`(i<>j and (i-j mod n<=9 or j-i mod n<=9), 1, 0)))):
seq(a(n), n=0..20);
-
a[n_] := If[n == 0, 1, Permanent[Table[If[i != j && (Mod[i - j, n] <= 9 || Mod[j - i, n] <= 9), 1, 0], {i, 1, n}, {j, 1, n}]]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 20}] (* Jean-François Alcover, Jan 06 2016, adapted from Maple *)
A260091
Number of permutations p of [n] with no fixed points and cyclic displacement of elements restricted by seven: p(i)<>i and (i-p(i) mod n <= 7 or p(i)-i mod n <= 7).
Original entry on oeis.org
1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841, 2290792932, 32071101049, 481066515734, 2649865335040, 14570246018686, 80002336342276, 438791546196382, 2404416711392528, 13164695578635648, 72030936564665508, 393911127182051942
Offset: 0
-
a:= n-> `if`(n=0, 1, LinearAlgebra[Permanent](Matrix(n, (i, j)->
`if`(i<>j and (i-j mod n<=7 or j-i mod n<=7), 1, 0)))):
seq(a(n), n=0..16);
-
a[n_] := If[n == 0, 1, Permanent[Table[If[i != j && (Mod[i - j, n] <= 7 || Mod[j - i, n] <= 7), 1, 0], {i, 1, n}, {j, 1, n}]]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 16}] (* Jean-François Alcover, Jan 06 2016, adapted from Maple *)
A260092
Number of permutations p of [n] with no fixed points and cyclic displacement of elements restricted by four: p(i)<>i and (i-p(i) mod n <= 4 or p(i)-i mod n <= 4).
Original entry on oeis.org
1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 440192, 1445100, 4728000, 15405008, 49955280, 162442816, 530284304, 1738077424, 5714461760, 18795784436, 61868602624, 203858323008, 672535917712, 2221505855492, 7345985276816, 24314075406208, 80542683435168
Offset: 0
-
a:= n-> `if`(n=0, 1, LinearAlgebra[Permanent](Matrix(n, (i, j)->
`if`(i<>j and (i-j mod n<=4 or j-i mod n<=4), 1, 0)))):
seq(a(n), n=0..15);
-
a[n_] := If[n == 0, 1, Permanent[Table[If[i != j && (Mod[i - j, n] <= 4 || Mod[j - i, n] <= 4), 1, 0], {i, 1, n}, {j, 1, n}]]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 15}] (* Jean-François Alcover, Jan 06 2016, adapted from Maple *)
A260094
Number of permutations p of [n] with no fixed points and cyclic displacement of elements restricted by five: p(i)<>i and (i-p(i) mod n <= 5 or p(i)-i mod n <= 5).
Original entry on oeis.org
1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 59245120, 238282730, 956135652, 3828509472, 15296722436, 60990443730, 243596762752, 975165838970, 3913571754304, 15742403448024, 63428117376852, 255662480209770, 1031080275942464, 4161127398011040
Offset: 0
-
a:= n-> `if`(n=0, 1, LinearAlgebra[Permanent](Matrix(n, (i, j)->
`if`(i<>j and (i-j mod n<=5 or j-i mod n<=5), 1, 0)))):
seq(a(n), n=0..15);
-
a[n_] := If[n == 0, 1, Permanent[Table[If[i != j && (Mod[i - j, n] <= 5 || Mod[j - i, n] <= 5), 1, 0], {i, 1, n}, {j, 1, n}]]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 15}] (* Jean-François Alcover, Jan 06 2016, adapted from Maple *)
A260111
Number of permutations p of [n] with no fixed points and cyclic displacement of elements restricted by six: p(i)<>i and (i-p(i) mod n <= 6 or p(i)-i mod n <= 6).
Original entry on oeis.org
1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841, 2290792932, 10930514688, 52034548064, 247272708868, 1173385630596, 5560837425792, 26322368822528, 124470922522980, 589274182149120, 2793967092494408, 13269446868206480, 63125696320334912
Offset: 0
-
a:= n-> `if`(n=0, 1, LinearAlgebra[Permanent](Matrix(n, (i, j)->
`if`(i<>j and (i-j mod n<=6 or j-i mod n<=6), 1, 0)))):
seq(a(n), n=0..16);
-
a[n_] := If[n == 0, 1, Permanent[Table[If[i != j && (Mod[i - j, n] <= 6 || Mod[j - i, n] <= 6), 1, 0], {i, 1, n}, {j, 1, n}]]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 16}] (* Jean-François Alcover, Jan 06 2016, adapted from Maple *)
A260115
Number of permutations p of [n] with no fixed points and cyclic displacement of elements restricted by eight: p(i)<>i and (i-p(i) mod n <= 8 or p(i)-i mod n <= 8).
Original entry on oeis.org
1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841, 2290792932, 32071101049, 481066515734, 7697064251745, 130850092279664, 817154768973824, 5095853023109484, 31742020729513344, 197541094675490640, 1228455950686697872, 7634711586761705092
Offset: 0
-
a:= n-> `if`(n=0, 1, LinearAlgebra[Permanent](Matrix(n, (i, j)->
`if`(i<>j and (i-j mod n<=8 or j-i mod n<=8), 1, 0)))):
seq(a(n), n=0..18);
-
a[n_] := If[n == 0, 1, Permanent[Table[If[i != j && (Mod[i - j, n] <= 8 || Mod[j - i, n] <= 8), 1, 0], {i, 1, n}, {j, 1, n}]]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 18}] (* Jean-François Alcover, Jan 06 2016, adapted from Maple *)
A260216
Number of permutations p of [n] with no fixed points and cyclic displacement of elements restricted by ten: p(i)<>i and (i-p(i) mod n <= 10 or p(i)-i mod n <= 10).
Original entry on oeis.org
1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841, 2290792932, 32071101049, 481066515734, 7697064251745, 130850092279664, 2355301661033953, 44750731559645106, 895014631192902121, 18795307255050944540, 145060238642780180480, 1118480911876659396600
Offset: 0
-
a:= n-> `if`(n=0, 1, LinearAlgebra[Permanent](Matrix(n, (i, j)->
`if`(i<>j and (i-j mod n<=10 or j-i mod n<=10), 1, 0)))):
seq(a(n), n=0..22);
-
a[n_] := If[n == 0, 1, Permanent[Table[If[i != j && (Mod[i - j, n] <= 10 || Mod[j - i, n] <= 10), 1, 0], {i, 1, n}, {j, 1, n}]]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 22}] (* Jean-François Alcover, Jan 06 2016, adapted from Maple *)
A033305
Number of permutations (p1,...,pn) such that 1 <= |pk - k| <= 2 for all k.
Original entry on oeis.org
1, 0, 1, 2, 4, 6, 13, 24, 45, 84, 160, 300, 565, 1064, 2005, 3774, 7108, 13386, 25209, 47472, 89401, 168360, 317056, 597080, 1124425, 2117520, 3987721, 7509690, 14142276, 26632782, 50154949, 94451976, 177872293
Offset: 0
- Lehmer, D. H.; Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
- R. P. Stanley, Enumerative Combinatorics I, p. 252, Example 4.7.16.
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,-1).
-
I:=[1,0,1,2,4]; [n le 5 select I[n] else Self(n-1) +Self(n-2) +Self(n-3) +Self(n-4) -Self(n-5): n in [1..41]]; // G. C. Greubel, Jan 14 2022
-
LinearRecurrence[{1,1,1,1,-1},{1,0,1,2,4},40] (* Harvey P. Dale, Aug 28 2012 *)
-
h(n) := sum(sum(binomial(k,r) *sum(binomial(r,m) *sum(binomial(m,j) *binomial(j,n-m-k-j-r) *(-1)^(n-m-k-j-r), j,0,m), m,0,r), r,0,k), k,1,n); a(n):=h(n)-h(n-1); /* Vladimir Kruchinin, Sep 10 2010 */
-
[( (1-x)/((1+x)*(1-2*x+x^2-2*x^3+x^4)) ).series(x,n+1).list()[n] for n in (0..40)] # G. C. Greubel, Jan 14 2022
A000804
Permanent of a certain cyclic n X n (0,1) matrix.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 265, 579, 1265, 2783, 6208, 13909, 31337, 70985, 161545, 369024, 845825, 1944295, 4480285, 10345391, 23930320, 55435605, 128577253, 298529333, 693718721, 1613210120, 3753680073, 8738534315, 20351593033, 47413960239, 110493496000
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- N. Metropolis et al., Permanents of cyclic (0,1) matrices, J. Combin. Theory, 7 (1969), 291-321.
- H. Minc, Permanents of (0,1)-circulants, Canad. Math. Bull., 7 (1964), 253-263.
- Index entries for sequences related to binary matrices
- Index entries for linear recurrences with constant coefficients, signature (3, 0, -2, -2, -6, 2, 4, 2, 2, -1, -1).
-
a:= n-> `if`(n<5, n!, (Matrix(11, (i,j)-> if i+1=j then 1 elif i=11 then [-1, -1, 2, 2, 4, 2, -6, -2, -2, 0, 3][j] else 0 fi)^(n+6). <<41, -16, 33, -1, 5, -1, 16, 5, 13, 29, 65>>)[1,1]): seq(a(n), n=0..30);
-
a[n_] := If[n<5, n!, ((Table[Which[i+1 == j, 1, i == 11, {-1, -1, 2, 2, 4, 2, -6, -2, -2, 0, 3}[[j]], True, 0], {i, 1, 11}, {j, 1, 11}] // MatrixPower[#, n+6]&).{41, -16, 33, -1, 5, -1, 16, 5, 13, 29, 65}) // First]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
Showing 1-10 of 10 results.
Comments