cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033436 a(n) = ceiling( (3*n^2 - 4)/8 ).

Original entry on oeis.org

0, 0, 1, 3, 6, 9, 13, 18, 24, 30, 37, 45, 54, 63, 73, 84, 96, 108, 121, 135, 150, 165, 181, 198, 216, 234, 253, 273, 294, 315, 337, 360, 384, 408, 433, 459, 486, 513, 541, 570, 600, 630, 661, 693, 726, 759, 793, 828
Offset: 0

Views

Author

Keywords

Comments

Number of edges in 4-partite Turan graph of order n.
Apart from the initial term this equals the elliptic troublemaker sequence R_n(1,4) (also sequence R_n(3,4)) in the notation of Stange (see Table 1, p.16). For other elliptic troublemaker sequences R_n(a,b) see the cross references below. - Peter Bala, Aug 08 2013

References

  • R. L. Graham, Martin Grötschel, and László Lovász, Handbook of Combinatorics, Vol. 2, 1995, p. 1234.

Crossrefs

Cf. A002620 (= R_n(1,2)), A000212 (= R_n(1,3) = R_n(2,3)), A033437 (= R_n(1,5) = R_n(4,5)), A033438 (= R_n(1,6) = R_n(5,6)), A033439 (= R_n(1,7) = R_n(6,7)), A033440, A033441, A033442, A033443, A033444.
Cf. A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6)), A184535 (= R_n(2,5) = R_n(3,5)).

Programs

Formula

The second differences of the listed terms are periodic with period (1, 1, 1, 0) of length 4, showing that the terms satisfy the recurrence a(n) = 2a(n-1)-a(n-2)+a(n-4)-2a(n-5)+a(n-6). - John W. Layman, Jan 23 2001
a(n) = (1/16) {6n^2 - 5 + (-1)^n + 2(-1)^[n/2] - 2(-1)^[(n-1)/2] }. Therefore a(n) is asymptotic to 3/8*n^2. - Ralf Stephan, Jun 09 2005
O.g.f.: -x^2*(1+x+x^2)/((x+1)*(x^2+1)*(x-1)^3). - R. J. Mathar, Dec 05 2007
a(n) = Sum_{k=0..n} A166486(k)*(n-k). - Reinhard Zumkeller, Nov 30 2009
a(n) = floor(3*n^2/8). - Peter Bala, Aug 08 2013
a(n) = Sum_{i=1..n} floor(3*i/4). - Wesley Ivan Hurt, Sep 12 2017
Sum_{n>=2} 1/a(n) = Pi^2/36 + tan(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)) + 2/3. - Amiram Eldar, Sep 24 2022