A033455 Convolution of nonzero squares A000290 with themselves.
1, 8, 34, 104, 259, 560, 1092, 1968, 3333, 5368, 8294, 12376, 17927, 25312, 34952, 47328, 62985, 82536, 106666, 136136, 171787, 214544, 265420, 325520, 396045, 478296, 573678, 683704, 809999, 954304, 1118480, 1304512, 1514513, 1750728, 2015538, 2311464
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Abderrahim Arabi, Hacène Belbachir, Jean-Philippe Dubernard, Plateau Polycubes and Lateral Area, arXiv:1811.05707 [math.CO], 2018. See Column 1 Table 1 p. 8.
- Milan Janjic, Two Enumerative Functions
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- C. P. Neuman and D. I. Schonbach, Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698). See Table 2. - _N. J. A. Sloane_, Mar 23 2014
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
GAP
List([1..40], n-> ((n+1)^5 -(n+1))/30); # G. C. Greubel, Jul 05 2019
-
Magma
[(n^5-n)/30: n in [2..41]]; // Vincenzo Librandi, Mar 24 2014
-
Mathematica
Table[(n^5 - n)/30, {n,2,41}] (* Vladimir Joseph Stephan Orlovsky, Feb 28 2011 *) CoefficientList[Series[(1+x)^2/(1-x)^6, {x,0,40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
-
PARI
vector(40, n, ((n+1)^5 -n-1)/30) \\ G. C. Greubel, Jul 05 2019
-
Sage
[((n+1)^5 -n-1)/30 for n in (1..40)] # G. C. Greubel, Jul 05 2019
Formula
a(n-1) = n*(n^4 - 1)/30 = A061167(n)/30. - Henry Bottomley, Apr 18 2001
G.f.: x*(1+x)^2/(1-x)^6. - Philippe Deléham, Feb 21 2012
a(n) = Sum_{k=1..n+1} k^2*(n+1-k)^2. - Kolosov Petro, Feb 07 2019
E.g.f.: x*(30 +90*x +65*x^2 +15*x^3 +x^4)*exp(x)/30. - G. C. Greubel, Jul 05 2019
Extensions
More terms from Vincenzo Librandi, Mar 24 2014
Comments