cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033461 Number of partitions of n into distinct squares.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 0, 2, 2, 0, 0, 2, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 2, 3, 1, 1, 4, 3, 0, 1, 2, 2, 1, 0, 1, 4, 3, 0, 2, 4, 2, 1, 3, 2, 1, 2, 3, 3, 2, 1, 3, 6, 3, 0, 2, 5, 3, 0, 1, 3, 3, 3, 4
Offset: 0

Views

Author

Keywords

Comments

"WEIGH" transform of squares A000290.
a(n) = 0 for n in {A001422}, a(n) > 0 for n in {A003995}. - Alois P. Heinz, May 14 2014
Number of partitions of n in which each part i has multiplicity i. Example: a(50)=3 because we have [1,2,2,3,3,3,6,6,6,6,6,6], [1,7,7,7,7,7,7,7], and [3,3,3,4,4,4,4,5,5,5,5,5]. - Emeric Deutsch, Jan 26 2016
The Heinz numbers of integer partitions into distinct pairs are given by A324587. - Gus Wiseman, Mar 09 2019
From Gus Wiseman, Mar 09 2019: (Start)
Equivalent to Emeric Deutsch's comment, a(n) is the number of integer partitions of n where the multiplicities (where if x < y the multiplicity of x is counted prior to the multiplicity of y) are equal to the distinct parts in increasing order. The Heinz numbers of these partitions are given by A109298. For example, the first 30 terms count the following integer partitions:
1: (1)
4: (22)
5: (221)
9: (333)
10: (3331)
13: (33322)
14: (333221)
16: (4444)
17: (44441)
20: (444422)
21: (4444221)
25: (55555)
25: (4444333)
26: (555551)
26: (44443331)
29: (5555522)
29: (444433322)
30: (55555221)
30: (4444333221)
The case where the distinct parts are taken in decreasing order is A324572, with Heinz numbers given by A324571.
(End)

Examples

			a(50)=3 because we have [1,4,9,36], [1,49], and [9,16,25]. - _Emeric Deutsch_, Jan 26 2016
From _Gus Wiseman_, Mar 09 2019: (Start)
The first 30 terms count the following integer partitions:
   1: (1)
   4: (4)
   5: (4,1)
   9: (9)
  10: (9,1)
  13: (9,4)
  14: (9,4,1)
  16: (16)
  17: (16,1)
  20: (16,4)
  21: (16,4,1)
  25: (25)
  25: (16,9)
  26: (25,1)
  26: (16,9,1)
  29: (25,4)
  29: (16,9,4)
  30: (25,4,1)
  30: (16,9,4,1)
(End)
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 288-289.

Crossrefs

Cf. A001422, A003995, A078434, A242434 (the same for compositions), A279329.
Row sums of A341040.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1) +`if`(i^2>n, 0, b(n-i^2, i-1))))
        end:
    a:= n-> b(n, isqrt(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, May 14 2014
  • Mathematica
    nn=10; CoefficientList[Series[Product[(1+x^(k*k)), {k,nn}], {x,0,nn*nn}], x] (* T. D. Noe, Jul 24 2006 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i^2 > n, 0, b[n - i^2, i-1]]]]; a[n_] := b[n, Floor[Sqrt[n]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 21 2015, after Alois P. Heinz *)
    nmax = 20; poly = ConstantArray[0, nmax^2 + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += poly[[j - k^2 + 1]], {j, nmax^2, k^2, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Dec 09 2016 *)
    Table[Length[Select[IntegerPartitions[n],Reverse[Union[#]]==Length/@Split[#]&]],{n,30}] (* Gus Wiseman, Mar 09 2019 *)
  • PARI
    a(n)=polcoeff(prod(k=1,sqrt(n),1+x^k^2), n)
    
  • PARI
    first(n)=Vec(prod(k=1,sqrtint(n),1+'x^k^2,O('x^(n+1))+1)) \\ Charles R Greathouse IV, Sep 03 2015
    
  • Python
    from functools import cache
    from sympy.core.power import isqrt
    @cache
    def b(n,i):
      # Code after Alois P. Heinz
      if n == 0: return 1
      if i == 0: return 0
      i2 = i*i
      return b(n, i-1) + (0 if i2 > n else b(n - i2, i-1))
    a = lambda n: b(n, isqrt(n))
    print([a(n) for n in range(1, 101)]) # Darío Clavijo, Nov 30 2023

Formula

G.f.: Product_{n>=1} ( 1+x^(n^2) ).
a(n) ~ exp(3 * 2^(-5/3) * Pi^(1/3) * ((sqrt(2)-1)*zeta(3/2))^(2/3) * n^(1/3)) * ((sqrt(2)-1)*zeta(3/2))^(1/3) / (2^(4/3) * sqrt(3) * Pi^(1/3) * n^(5/6)), where zeta(3/2) = A078434. - Vaclav Kotesovec, Dec 09 2016
See Murthy, Brack, Bhaduri, Bartel (2018) for a more complete asymptotic expansion. - N. J. A. Sloane, Aug 17 2018

Extensions

More terms from Michael Somos