cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033469 Denominator of Bernoulli(2n,1/2).

Original entry on oeis.org

1, 12, 240, 1344, 3840, 33792, 5591040, 49152, 16711680, 104595456, 173015040, 289406976, 22900899840, 201326592, 116769423360, 7689065201664, 1095216660480, 51539607552, 65942866278481920, 824633720832, 7438196161904640, 3971435999526912
Offset: 0

Views

Author

Keywords

Comments

From the von Staudt-Clausen theorem it follows that a(n) can be computed without using Bernoulli polynomials or the 'denominator'-function (see the Sage implementation). - Peter Luschny, Mar 24 2014

References

  • J. R. Philip, The symmetrical Euler-Maclaurin summation formula, Math. Sci., 6, 1981, pp. 35-41.

Crossrefs

Cf. A001896.

Programs

  • Maple
    with(numtheory); seq(denom(bernoulli(2*n, 1/2)), n=0..20);
  • Mathematica
    Table[ BernoulliB[2*n, 1/2] // Denominator, {n, 0, 18}] (* Jean-François Alcover, Apr 15 2013 *)
    a[ n_] := If[ n < 0, 0, (2 n)! SeriesCoefficient[ x/2 / Sinh[x/2], {x, 0, 2 n}] // Denominator]; (* Michael Somos, Sep 21 2016 *)
  • PARI
    a(n)=denominator(subst(bernpol(2*n,x),x,1/2)); \\ Joerg Arndt, Apr 17 2013
    
  • Sage
    def A033469(n):
        if n == 0: return 1
        M = map(lambda i: i+1, divisors(2*n))
        return 2^(2*n-1)*mul(filter(lambda s: is_prime(s), M))
    [A033469(n) for n in (0..21)] # Peter Luschny, Mar 24 2014

Formula

a(n) = denominator(2*(2*Pi)^(-2*n)*(2*n)!*Li_{2*n}(-1)). - Peter Luschny, Jun 29 2012
a(n) = A081294(n) * A002445(n) for n > 0. - Paul Curtz, Apr 17 2013
Apparently, denominators of the fractions with e.g.f. (x/2) / sinh(x/2). - Tom Copeland, Sep 17 2016

Extensions

More terms from Joerg Arndt, Apr 17 2013