A001896
Numerators of cosecant numbers -2*(2^(2*n - 1) - 1)*Bernoulli(2*n); also of Bernoulli(2*n, 1/2) and Bernoulli(2*n, 1/4).
Original entry on oeis.org
1, -1, 7, -31, 127, -2555, 1414477, -57337, 118518239, -5749691557, 91546277357, -1792042792463, 1982765468311237, -286994504449393, 3187598676787461083, -4625594554880206790555, 16555640865486520478399, -22142170099387402072897
Offset: 0
1, -1/12, 7/240, -31/1344, 127/3840, -2555/33792, 1414477/5591040, -57337/49152, 118518239/16711680, ... = a(n)/A033469(n).
Cosecant numbers {-2*(2^(2*n-1)-1)*Bernoulli(2*n)} are 1, -1/3, 7/15, -31/21, 127/15, -2555/33, 1414477/1365, -57337/3, 118518239/255, -5749691557/399, 91546277357/165, -1792042792463/69, 1982765468311237/1365, -286994504449393/3, 3187598676787461083/435, ... = a(n)/A001897(n).
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 187.
- S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51.
- N. E. Nörlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 458.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Hector Blandin and Rafael Diaz, Compositional Bernoulli numbers, arXiv:0708.0809 [math.CO], 2007-2008; Page 7, 3rd table, (B^sin)_1,n is identical to |A001896| / A001897.
- S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51. [Annotated scanned copy of pages 38-51 only, plus notes]
- Masanobu Kaneko, Maneka Pallewatta, and Hirofumi Tsumura, On Polycosecant Numbers, J. Integer Seq. 23 (2020), no. 6, 17 pp. See line k=1 of Table 1 p. 3.
- D. H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler, Annals Math., 36 (1935), 637-649.
- N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924 [Annotated scanned copy of pages 144-151 and 456-463]
- Index entries for sequences related to Bernoulli numbers.
-
seq(numer(bernoulli(2*n, 1/2)), n=0..20);
-
a[n_] := -2*(2^(2*n-1)-1)*BernoulliB[2*n]; Table[a[n], {n, 0, 20}] // Numerator (* Jean-François Alcover, Sep 11 2013 *)
-
a(n) = numerator(-2*(2^(2*n-1)-1)*bernfrac(2*n)); \\ Michel Marcus, Mar 01 2015
-
def A001896_list(len):
R, C = [1], [1]+[0]*(len-1)
for n in (1..len-1):
for k in range(n, 0, -1):
C[k] = C[k-1] / (8*k*(2*k+1))
C[0] = -sum(C[k] for k in (1..n))
R.append((C[0]*factorial(2*n)).numerator())
return R
A001896_list(18) # Peter Luschny, Feb 20 2016
A001897
Denominators of cosecant numbers: -2*(2^(2*n-1)-1)*Bernoulli(2*n).
Original entry on oeis.org
1, 3, 15, 21, 15, 33, 1365, 3, 255, 399, 165, 69, 1365, 3, 435, 7161, 255, 3, 959595, 3, 6765, 903, 345, 141, 23205, 33, 795, 399, 435, 177, 28393365, 3, 255, 32361, 15, 2343, 70050435, 3, 15, 1659, 115005, 249, 1702155, 3, 30705, 136059, 705, 3, 2250885, 3, 16665, 2163
Offset: 0
Cosecant numbers {-2*(2^(2*n-1)-1)*Bernoulli(2*n)} are 1, -1/3, 7/15, -31/21, 127/15, -2555/33, 1414477/1365, -57337/3, 118518239/255, -5749691557/399, 91546277357/165, -1792042792463/69, 1982765468311237/1365, -286994504449393/3, 3187598676787461083/435, ... = A001896/A001897.
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 187.
- S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51.
- N. E. Nörlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 458.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Hector Blandin and Rafael Diaz, Compositional Bernoulli numbers, arXiv:0708.0809 [math.CO], 2007-2008, Page 7, 3rd table, (B^sin)_1,n is identical to |A001896| / A001897.
- S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51. [Annotated scanned copy of pages 38-51 only, plus notes]
- Masanobu Kaneko, Maneka Pallewatta, and Hirofumi Tsumura, On Polycosecant Numbers, J. Integer Seq. 23 (2020), no. 6, 17 pp. See line k=1 of Table 1 p. 3.
- D. H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler, Annals Math., 36 (1935), 637-649.
- N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer 1924, p. 27.
- N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924 [Annotated scanned copy of pages 144-151 and 456-463]
-
[Denominator(2*(1-2^(2*n-1))*Bernoulli(2*n)): n in [0..55]]; // G. C. Greubel, Apr 06 2019
-
b := n -> bernoulli(n)*2^add(i,i=convert(n,base,2));
a := n -> denom(b(2*n)); # Peter Luschny, May 02 2009
# Alternative :
Clausen := proc(n) local i,S; map(i->i+1, numtheory[divisors](n));
S := select(isprime, %); if S <> {} then mul(i,i=S) else NULL fi end:
A001897_list := n -> [1,seq(Clausen(2*i)/2,i=1..n-1)];
A001897_list(52); # Peter Luschny, Oct 03 2011
-
a[n_] := Denominator[-2*(2^(2*n-1)-1)*BernoulliB[2*n]]; Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Sep 11 2013 *)
-
a(n) = denominator(-2*(2^(2*n-1)-1)*bernfrac(2*n)); \\ Michel Marcus, Apr 06 2019
-
def A001897(n):
if n == 0:
return 1
M = (d + 1 for d in divisors(2 * n))
return prod(s for s in M if is_prime(s)) / 2
[A001897(n) for n in range(55)] # Peter Luschny, Feb 20 2016
A157780
Denominator of Bernoulli(n, 1/2).
Original entry on oeis.org
1, 1, 12, 1, 240, 1, 1344, 1, 3840, 1, 33792, 1, 5591040, 1, 49152, 1, 16711680, 1, 104595456, 1, 173015040, 1, 289406976, 1, 22900899840, 1, 201326592, 1, 116769423360, 1, 7689065201664, 1, 1095216660480, 1, 51539607552, 1
Offset: 0
-
Table[Denominator[BernoulliB[n, 1/2]], {n, 0, 50}] (* Vincenzo Librandi, Mar 19 2014 *)
A335948
T(n, k) = denominator([x^k] b_n(x)), where b_n(x) = Sum_{k=0..n} binomial(n,k)* Bernoulli(k, 1/2)*x^(n-k). Triangle read by rows, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 240, 1, 2, 1, 1, 1, 48, 1, 6, 1, 1, 1344, 1, 16, 1, 4, 1, 1, 1, 192, 1, 48, 1, 4, 1, 1, 3840, 1, 48, 1, 24, 1, 3, 1, 1, 1, 1280, 1, 16, 1, 40, 1, 1, 1, 1, 33792, 1, 256, 1, 32, 1, 8, 1, 4, 1, 1, 1, 3072, 1, 256, 1, 32, 1, 8, 1, 12, 1, 1
Offset: 0
First few polynomials are:
b_0(x) = 1;
b_1(x) = x;
b_2(x) = -(1/12) + x^2;
b_3(x) = -(1/4)*x + x^3;
b_4(x) = (7/240) - (1/2)*x^2 + x^4;
b_5(x) = (7/48)*x - (5/6)*x^3 + x^5;
b_6(x) = -(31/1344) + (7/16)*x^2 - (5/4)*x^4 + x^6;
Triangle starts:
1;
1, 1;
12, 1, 1;
1, 4, 1, 1;
240, 1, 2, 1, 1;
1, 48, 1, 6, 1, 1;
1344, 1, 16, 1, 4, 1, 1;
1, 192, 1, 48, 1, 4, 1, 1;
3840, 1, 48, 1, 24, 1, 3, 1, 1;
1, 1280, 1, 16, 1, 40, 1, 1, 1, 1;
33792, 1, 256, 1, 32, 1, 8, 1, 4, 1, 1;
A335954
a(n) = Numerator(-2*n*HurwitzZeta(1 - 2*n, -1/2)) for n > 0, and a(0) = 1.
Original entry on oeis.org
1, 11, 127, 221, 367, -1895, 1447237, -57253, 118526399, -5749677193, 91546283957, -1792042789427, 1982765468376757, -286994504449237, 3187598676787485443, -4625594554880206360895, 16555640865486520494719, -22142170099387402072693, 904185845619475242495903560731
Offset: 0
-
a := n -> numer(`if`(n=0, 1, -2*n*Zeta(0, 1-2*n, -1/2))): seq(a(n), n=0..18);
-
a[0] := 1; a[n_] := -2 n HurwitzZeta[1 - 2 n, -1/2]; Array[a, 18, 0] // Numerator
-
a(n) = numerator(subst(bernpol(2*n, x), x, -1/2)); \\ Michel Marcus, Jul 21 2020
A212655
Denominator of Bernoulli(2*n,1/2) / Period of length 2: repeat 12, 60.
Original entry on oeis.org
1, 4, 112, 64, 2816, 93184, 4096, 278528, 8716288, 2883584
Offset: 1
a(1) = (B(2,1/2)=12)/12=1, a(2)=240/60=4, a(3)=1344/12=112, a(4)=3840/60=64.
Showing 1-6 of 6 results.
Comments