cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001896 Numerators of cosecant numbers -2*(2^(2*n - 1) - 1)*Bernoulli(2*n); also of Bernoulli(2*n, 1/2) and Bernoulli(2*n, 1/4).

Original entry on oeis.org

1, -1, 7, -31, 127, -2555, 1414477, -57337, 118518239, -5749691557, 91546277357, -1792042792463, 1982765468311237, -286994504449393, 3187598676787461083, -4625594554880206790555, 16555640865486520478399, -22142170099387402072897
Offset: 0

Views

Author

Keywords

Comments

|A001896(n)|*Pi^(2n)/A001897(n) is the value of the multi zeta function z(2,2,...,2) with n 2's, where z(k_l,k_2,...,k_n) = Sum_{i_n >= i_(n-1) >= ... >= i_1 >= 1}1/((i_1)^k_1 (i_2)^k_2 ... (i_n)^k_n). The proof is simple: start with the product expansion sin(Pi x)/(Pi x) = Product_{r>=1}(1-x^2/r^2), take reciprocals, and expand the right side. The coefficient of x^(2n) is seen to be z(2,2,...,2) with n 2's. - David Callan, Aug 27 2014
See A062715 for a method of obtaining the cosecant numbers from the square of Pascal's triangle. - Peter Bala, Jul 18 2013

Examples

			1, -1/12, 7/240, -31/1344, 127/3840, -2555/33792, 1414477/5591040, -57337/49152, 118518239/16711680, ... = a(n)/A033469(n).
Cosecant numbers {-2*(2^(2*n-1)-1)*Bernoulli(2*n)} are 1, -1/3, 7/15, -31/21, 127/15, -2555/33, 1414477/1365, -57337/3, 118518239/255, -5749691557/399, 91546277357/165, -1792042792463/69, 1982765468311237/1365, -286994504449393/3, 3187598676787461083/435, ... = a(n)/A001897(n).
		

References

  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 187.
  • S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51.
  • N. E. Nörlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 458.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001897 (denominators), A033469, A036280, A062715, A145901.

Programs

  • Maple
    seq(numer(bernoulli(2*n, 1/2)), n=0..20);
  • Mathematica
    a[n_] := -2*(2^(2*n-1)-1)*BernoulliB[2*n]; Table[a[n], {n, 0, 20}] // Numerator (* Jean-François Alcover, Sep 11 2013 *)
  • PARI
    a(n) = numerator(-2*(2^(2*n-1)-1)*bernfrac(2*n)); \\ Michel Marcus, Mar 01 2015
    
  • Sage
    def A001896_list(len):
        R, C = [1], [1]+[0]*(len-1)
        for n in (1..len-1):
            for k in range(n, 0, -1):
                C[k] = C[k-1] / (8*k*(2*k+1))
            C[0] = -sum(C[k] for k in (1..n))
            R.append((C[0]*factorial(2*n)).numerator())
        return R
    A001896_list(18) # Peter Luschny, Feb 20 2016

Formula

a(n) = numerator((-Pi^2)^(-n)*Integral_{x=0..1} (log(x/(1-x)))^2*n). - Groux Roland, Nov 10 2009
a(n) = numerator((-1)^(n+1)*(2*Pi)^(-2*n)*(2*n)!*Li_{2*n}(-1)). - Peter Luschny, Jun 29 2012
E.g.f. 2*x*exp(x)/(exp(2*x) - 1) = 1 - 1/3*x^2/2! + 7/15*x^4/4! - 31/21*x^6/6! + .... = Sum_{n >= 0} a(n)/A001897(n)*x^(2*n)/(2*n)!. - Peter Bala, Jul 18 2013
a(n) = numerator((-1)^n*I(n)), where I(n) = 2*Pi*Integral_{z=-oo..oo} (z^n / (exp(-Pi*z) + exp(Pi*z)))^2. - Peter Luschny, Jul 25 2021

A001897 Denominators of cosecant numbers: -2*(2^(2*n-1)-1)*Bernoulli(2*n).

Original entry on oeis.org

1, 3, 15, 21, 15, 33, 1365, 3, 255, 399, 165, 69, 1365, 3, 435, 7161, 255, 3, 959595, 3, 6765, 903, 345, 141, 23205, 33, 795, 399, 435, 177, 28393365, 3, 255, 32361, 15, 2343, 70050435, 3, 15, 1659, 115005, 249, 1702155, 3, 30705, 136059, 705, 3, 2250885, 3, 16665, 2163
Offset: 0

Views

Author

Keywords

Comments

Same as half the denominators of the even-indexed Bernoulli numbers B_{2*n} for n>0, by the von Staudt-Clausen theorem and Fermat's little theorem. - Bernd C. Kellner and Jonathan Sondow, Jan 02 2017 [This is implemented in the second Maple program. - Peter Luschny, Aug 21 2021]

Examples

			Cosecant numbers {-2*(2^(2*n-1)-1)*Bernoulli(2*n)} are 1, -1/3, 7/15, -31/21, 127/15, -2555/33, 1414477/1365, -57337/3, 118518239/255, -5749691557/399, 91546277357/165, -1792042792463/69, 1982765468311237/1365, -286994504449393/3, 3187598676787461083/435, ... = A001896/A001897.
		

References

  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 187.
  • S. A. Joffe, Sums of like powers of natural numbers, Quart. J. Pure Appl. Math. 46 (1914), 33-51.
  • N. E. Nörlund, Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924, p. 458.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Denominator(2*(1-2^(2*n-1))*Bernoulli(2*n)): n in [0..55]]; // G. C. Greubel, Apr 06 2019
  • Maple
    b := n -> bernoulli(n)*2^add(i,i=convert(n,base,2));
    a := n -> denom(b(2*n)); # Peter Luschny, May 02 2009
    # Alternative :
    Clausen := proc(n) local i,S; map(i->i+1, numtheory[divisors](n));
    S := select(isprime, %); if S <> {} then mul(i,i=S) else NULL fi end:
    A001897_list := n -> [1,seq(Clausen(2*i)/2,i=1..n-1)];
    A001897_list(52); # Peter Luschny, Oct 03 2011
  • Mathematica
    a[n_] := Denominator[-2*(2^(2*n-1)-1)*BernoulliB[2*n]]; Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Sep 11 2013 *)
  • PARI
    a(n) = denominator(-2*(2^(2*n-1)-1)*bernfrac(2*n)); \\ Michel Marcus, Apr 06 2019
    
  • Sage
    def A001897(n):
        if n == 0:
            return 1
        M = (d + 1 for d in divisors(2 * n))
        return prod(s for s in M if is_prime(s)) / 2
    [A001897(n) for n in range(55)]  # Peter Luschny, Feb 20 2016
    

Formula

a(0)=1, a(n)=(1/2)*A002445(n) for n>=1. - Joerg Arndt, May 07 2012
a(n) = denominator((2*n)!*Li_{2*n}(1)) for n > 0. - Peter Luschny, Jun 29 2012
a(0)=1, a(n) = (1/2)*A027642(2*n) = (3/2)*A277087(n) for n>=1. - Jonathan Sondow, Dec 14 2016
From Peter Luschny, Sep 06 2017: (Start)
a(n) = denominator(r(n)) where r(n) = Sum_{0..n} (-1)^(n-k)*A241171(n, k)/(2*k+1).
a(n) = denominator(bernoulli(2*n, 1/2))/4^n = A033469(n)/4^n. (End)
Apparently a(n) = denominator(Sum_{k=0..2*n-2} (-1)^k*E2(2*n-1, k+1)/binomial(4*n-1, k+1)), where E2(n, k) denotes the second-order Eulerian numbers A340556. - Peter Luschny, Feb 17 2021

A157780 Denominator of Bernoulli(n, 1/2).

Original entry on oeis.org

1, 1, 12, 1, 240, 1, 1344, 1, 3840, 1, 33792, 1, 5591040, 1, 49152, 1, 16711680, 1, 104595456, 1, 173015040, 1, 289406976, 1, 22900899840, 1, 201326592, 1, 116769423360, 1, 7689065201664, 1, 1095216660480, 1, 51539607552, 1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 08 2009

Keywords

Comments

Included for completeness, A033469 is the official version of this sequence.

Crossrefs

For numerators see A157779.

Programs

  • Mathematica
    Table[Denominator[BernoulliB[n, 1/2]], {n, 0, 50}] (* Vincenzo Librandi, Mar 19 2014 *)

Formula

a(n) = denominator(-(1-2^(1-n))*Bernoulli(n)). - Fabián Pereyra, Dec 31 2022

A335948 T(n, k) = denominator([x^k] b_n(x)), where b_n(x) = Sum_{k=0..n} binomial(n,k)* Bernoulli(k, 1/2)*x^(n-k). Triangle read by rows, for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 12, 1, 1, 1, 4, 1, 1, 240, 1, 2, 1, 1, 1, 48, 1, 6, 1, 1, 1344, 1, 16, 1, 4, 1, 1, 1, 192, 1, 48, 1, 4, 1, 1, 3840, 1, 48, 1, 24, 1, 3, 1, 1, 1, 1280, 1, 16, 1, 40, 1, 1, 1, 1, 33792, 1, 256, 1, 32, 1, 8, 1, 4, 1, 1, 1, 3072, 1, 256, 1, 32, 1, 8, 1, 12, 1, 1
Offset: 0

Views

Author

Peter Luschny, Jul 01 2020

Keywords

Comments

See A335947 for formulas and references concerning the polynomials.

Examples

			First few polynomials are:
b_0(x) = 1;
b_1(x) = x;
b_2(x) = -(1/12) + x^2;
b_3(x) = -(1/4)*x + x^3;
b_4(x) = (7/240) - (1/2)*x^2 + x^4;
b_5(x) = (7/48)*x - (5/6)*x^3 + x^5;
b_6(x) = -(31/1344) + (7/16)*x^2 - (5/4)*x^4 + x^6;
Triangle starts:
1;
1,     1;
12,    1,    1;
1,     4,    1,   1;
240,   1,    2,   1,  1;
1,     48,   1,   6,  1,  1;
1344,  1,    16,  1,  4,  1,  1;
1,     192,  1,   48, 1,  4,  1, 1;
3840,  1,    48,  1,  24, 1,  3, 1, 1;
1,     1280, 1,   16, 1,  40, 1, 1, 1, 1;
33792, 1,    256, 1,  32, 1,  8, 1, 4, 1, 1;
		

Crossrefs

Cf. A335947 (numerators), A157780 (column 0), A033469 (column 0 even indices only).

A335954 a(n) = Numerator(-2*n*HurwitzZeta(1 - 2*n, -1/2)) for n > 0, and a(0) = 1.

Original entry on oeis.org

1, 11, 127, 221, 367, -1895, 1447237, -57253, 118526399, -5749677193, 91546283957, -1792042789427, 1982765468376757, -286994504449237, 3187598676787485443, -4625594554880206360895, 16555640865486520494719, -22142170099387402072693, 904185845619475242495903560731
Offset: 0

Views

Author

Peter Luschny, Jul 21 2020

Keywords

Crossrefs

Cf. A033469 (denominators), A001896 (evaluated at x=+1/2).

Programs

  • Maple
    a := n -> numer(`if`(n=0, 1, -2*n*Zeta(0, 1-2*n, -1/2))): seq(a(n), n=0..18);
  • Mathematica
    a[0] := 1; a[n_] := -2 n HurwitzZeta[1 - 2 n, -1/2]; Array[a, 18, 0] // Numerator
  • PARI
    a(n) = numerator(subst(bernpol(2*n, x), x, -1/2)); \\ Michel Marcus, Jul 21 2020

Formula

a(n) = Numerator(Bernoulli(2*n, -1/2)).

A212655 Denominator of Bernoulli(2*n,1/2) / Period of length 2: repeat 12, 60.

Original entry on oeis.org

1, 4, 112, 64, 2816, 93184, 4096, 278528, 8716288, 2883584
Offset: 1

Views

Author

Paul Curtz, Apr 14 2013

Keywords

Comments

See A165949(n) = (A027642(n+1)=A027762(n))/A165734(n).
a(n) is divisible by 4^(n-1).

Examples

			a(1) = (B(2,1/2)=12)/12=1, a(2)=240/60=4, a(3)=1344/12=112, a(4)=3840/60=64.
		

Crossrefs

Cf. A000302.

Formula

a(n) = A033469(n)/A040874(n).
a(n) = 4^(n-1) * A165949(n).
Showing 1-6 of 6 results.