A033502 Carmichael numbers of the form (6*k+1)*(12*k+1)*(18*k+1), where 6*k+1, 12*k+1 and 18*k+1 are all primes.
1729, 294409, 56052361, 118901521, 172947529, 216821881, 228842209, 1299963601, 2301745249, 9624742921, 11346205609, 13079177569, 21515221081, 27278026129, 65700513721, 71171308081, 100264053529, 168003672409, 172018713961, 173032371289, 464052305161
Offset: 1
Keywords
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section A13, pp. 50-53.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
- Jack Chernick, On Fermat's simple theorem, Bull. Amer. Math. Soc., Vol. 45, No. 4 (1939), pp. 269-274.
- Shyam Sunder Gupta, On Some Special Numbers, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 22, 527-565.
- Douglas E. Iannucci, When the small divisors of a natural number are in arithmetic progression, INTEGERS, Electronic Journal of Combinatorial Number Theory, Vol. 18 (2018), #77. See p. 9.
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
- Bernd C. Kellner, On primary Carmichael numbers, Integers 22 (2022), #A38, 39 pp.; arXiv:1902.11283 [math.NT], 2019.
- G. Tarry, I. Franel, A. Korselt, and G. Vacca. Problème chinois. L'intermédiaire des mathématiciens, Vol. 6 (1899), pp. 142-144.
- Eric Weisstein's World of Mathematics, Carmichael Number.
- Index entries for sequences related to Carmichael numbers.
Crossrefs
Programs
-
Magma
[n : k in [1..710] | IsPrime(a) and IsPrime(b) and IsPrime(c) and IsOne(n mod CarmichaelLambda(n)) where n is a*b*c where a is 6*k+1 where b is 12*k+1 where c is 18*k+1]; // Arkadiusz Wesolowski, Oct 29 2013
-
Mathematica
CarmichaelNbrQ[n_] := ! PrimeQ@ n && Mod[n, CarmichaelLambda@ n] == 1; (6# + 1)(12# + 1)(18# + 1) & /@ Select[ Range@ 1000, PrimeQ[6# + 1] && PrimeQ[12# + 1] && PrimeQ[18# + 1] && CarmichaelNbrQ[(6# + 1)(12# + 1)(18# + 1)] &]
Extensions
Definition corrected (thanks to Umberto Cerruti) by Bruno Berselli, Jan 18 2013
Comments