cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033538 a(0)=1, a(1)=1, a(n) = 3*a(n-1) + a(n-2) + 1.

Original entry on oeis.org

1, 1, 5, 17, 57, 189, 625, 2065, 6821, 22529, 74409, 245757, 811681, 2680801, 8854085, 29243057, 96583257, 318992829, 1053561745, 3479678065, 11492595941, 37957465889, 125364993609, 414052446717, 1367522333761, 4516619448001, 14917380677765, 49268761481297
Offset: 0

Views

Author

Keywords

Comments

Number of times certain simple recursive programs (such as the Lisp program shown) call themselves on an input of length n.
This is the sequence A(1,1;3,1;1) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010

References

  • E. Hyvönen and J. Seppänen, LISP-kurssi, Osa 6 (Funktionaalinen ohjelmointi), Prosessori 4/1983, pp. 48-50 (in Finnish).

Crossrefs

Programs

  • GAP
    a:=[1,1];; for n in [3..40] do a[n]:=3*a[n-1]+a[n-2] +1; od; a; # G. C. Greubel, Jul 10 2019
  • Haskell
    a033538 n = a033538_list !! n
    a033538_list =
       1 : 1 : (map (+ 1) $ zipWith (+) a033538_list
                                        $ map (3 *) $ tail a033538_list)
    -- Reinhard Zumkeller, Aug 14 2011
    
  • Lisp
    (defun rewerse (lista) (cond ((null (cdr lista)) lista) (t (cons (car (rewerse (cdr lista))) (rewerse (cons (car lista) (rewerse (cdr (rewerse (cdr lista))))))))))
    
  • Magma
    I:=[1,1]; [n le 2 select I[n] else 3*Self(n-1) +Self(n-2) +1: n in [1..40]]; // G. C. Greubel, Jul 10 2019
    
  • Maple
    a := proc(n) option remember; if(n < 2) then RETURN(1); else RETURN(3*a(n-1)+a(n-2)+1); fi; end;
  • Mathematica
    CoefficientList[ Series[(1-3x+3x^2)/(1-4x+2x^2+x^3), {x,0,40}], x](* Jean-François Alcover, Nov 30 2011 *)
    RecurrenceTable[{a[0]==a[1]==1,a[n]==3a[n-1]+a[n-2]+1},a,{n,40}] (* or *) LinearRecurrence[{4,-2,-1},{1,1,5},41] (* Harvey P. Dale, Jan 05 2012 *)
    Table[(4*(Fibonacci[n,3] +Fibonacci[n-1,3]) -1)/3, {n,0,30}] (* G. C. Greubel, Oct 13 2019 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -1,-2,4]^n*[1;1;5])[1,1] \\ Charles R Greathouse IV, Feb 19 2017
    
  • Sage
    ((1-3*x+3*x^2)/((1-x)*(1-3*x-x^2))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 10 2019
    

Formula

From R. J. Mathar, Aug 22 2008: (Start)
O.g.f.: (1-3*x+3*x^2)/((1-x)*(1-3*x-x^2)).
a(n) = (4*A006190(n+1) - 8*A006190(n) - 1)/3. (End)
a(n) = 4*a(n-1) - 2*a(n-2) - a(n-3), a(0)=1=a(1), a(2)=5. Observed by G. Detlefs. See the W. Lang link. - Wolfdieter Lang, Oct 18 2010
a(n) = (4*(F(n,3) + F(n-1,3)) -1)/3, where F(n,x) is the Fibonacci polynomial (see A102426). - G. C. Greubel, Oct 13 2019