cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A248093 Triangle read by rows: TR(n,k) is the number of unordered vertex pairs at distance k of the hexagonal triangle T_n, defined in the He et al. reference (1<=k<=2n+1).

Original entry on oeis.org

1, 0, 6, 6, 6, 3, 13, 15, 21, 21, 15, 6, 22, 27, 42, 48, 45, 36, 24, 9, 33, 42, 69, 84, 87, 81, 69, 51, 33, 12, 46, 60, 102, 129, 141, 141, 132, 114, 93, 66, 42, 15, 61, 81, 141, 183, 207, 216, 213, 198, 177, 147, 117, 81, 51, 18, 78, 105, 186, 246, 285
Offset: 0

Views

Author

Emeric Deutsch, Nov 14 2014

Keywords

Comments

Number of entries in row n is 2*n+2.
The entries in row n are the coefficients of the Hosoya polynomial of T_n.
TR(n,0) = A028872(n+2) = number of vertices of T_n.
TR(n,1) = A140091(n) = number of edges of T_n.
sum(j*TR(n,j), j=0..2n+1) = A033544(n) = the Wiener index of T_n.
(1/2)*sum(j*(j+1)TR(n,j), j=0..2n+1) = A248094(n) = the hyper-Wiener index of T_n.
sum((-1)^j*TR(n,j), j=0..2n+1) = A002061(n). - Peter Luschny, Nov 15 2014

Examples

			Row n=1 is 6, 6, 6, 3; indeed, T_1 is a hexagon ABCDEF; it has 6 distances equal to 0 (= number of vertices), 6 distances equal to 1 (= number of edges), 6 distances equal to 2 (AC, BD, CE, DA, EA, FB), and 3 distances equal to 3 (AD, BE, CF).
Triangle starts:
1, 0;
6, 6, 6, 3;
13, 15, 21, 21, 15, 6;
22, 27, 42, 48, 45, 36, 24, 9;
33, 42, 69, 84, 87, 81, 69, 51, 33, 12;
		

Crossrefs

Programs

  • Maple
    G := (1+(3+6*t+4*t^2+3*t^3)*z-(1+t+2*t^2)*(2+t-2*t^2)*z^2+t^2*(1-3*t^2)*z^3+t^4*z^4)/((1-z)^3*(1-t^2*z)^2): Gser := simplify(series(G, z = 0, 25)): for n from 0 to 22 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 12 do seq(coeff(P[n], t, j), j = 0 .. 2*n+1) end do; # yields sequence in triangular form

Formula

G.f.: (1 + (3 + 6*t + 4*t^2 + 3*t^3)*z - (1 + t + 2*t^2)*(2 + t - 2*t^2)*z^2 +t^2*(1 - 3*t^2)*z^3 + t^4*z^4)/((1-z)^3*(1 - t^2*z^2)^2); follows from Theorem 3.6 of the He et al. reference.

A248094 The hyper-Wiener index of the hexagonal triangle T_n, defined in the He et al. reference.

Original entry on oeis.org

0, 42, 444, 2187, 7443, 20247, 47313, 98994, 190386, 342576, 584034, 952149, 1494909, 2272725, 3360399, 4849236, 6849300, 9491814, 12931704, 17350287, 22958103, 29997891, 38747709, 49524198, 62685990, 78637260, 97831422, 120774969, 148031457, 180225633, 218047707
Offset: 0

Views

Author

Emeric Deutsch, Nov 14 2014

Keywords

Crossrefs

Programs

  • Magma
    [n*(66+407*n+670*n^2+425*n^3+104*n^4+8*n^5)/40: n in [0..30]]; // Vincenzo Librandi, Nov 15 2014
  • Maple
    a := n -> (1/40)*n*(66 + 407*n + 670*n^2 + 425*n^3 + 104*n^4 + 8*n^5): seq(a(n), n = 0 .. 30);
  • Mathematica
    CoefficientList[Series[x (42 + 150 x - 39 x^2 - 12 x^3 + 3 x^4) / (1 - x)^7, {x, 0, 30}], x] (* Vincenzo Librandi, Nov 15 2014 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,42,444,2187,7443,20247,47313},40] (* Harvey P. Dale, Oct 22 2022 *)

Formula

a(n) = n*(66 + 407n + 670n^2 + 425n^3 + 104n^4 + 8n^5)/40 (see Corollary 3,10 in the He et al. reference).
G.f.: z*(42+150*z-39*z^2-12*z^3+3*z^4) /(1-z)^7. (Corrected by Vincenzo Librandi, Nov 15 2014)
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 6. - Wesley Ivan Hurt, Aug 16 2016

A248095 Triangle read by rows: TR(m,n) is the Wiener index of the hexagonal trapezium T(m,n), defined in the He et al. reference (1 <= n <= m).

Original entry on oeis.org

27, 109, 210, 279, 566, 822, 569, 1182, 1816, 2328, 1011, 2130, 3370, 4540, 5433, 1637, 3482, 5612, 7772, 9707, 11130, 2479, 5310, 8670, 12224, 15653, 18622, 20748, 3569, 7686, 12672, 18096, 23559, 28662, 32974, 36000, 4939, 10682, 17746, 25588
Offset: 1

Views

Author

Emeric Deutsch, Nov 15 2014

Keywords

Comments

m denotes the number of hexagons in the bottom row, while n is the number of rows of hexagons.
TR(m,1) = A143938(m) = Wiener index of a linear chain of m hexagons.
TR(n,n) = A033544(n) = Wiener index of an n-hexagonal triangle.

Examples

			Row 1 is 27; indeed T(1,1) is just one hexagon ABCDEF; it has 6 distances equal to 1 (= number of edges), 6 distances equal to 2 (AC, BD, CE, DA, EA, FB), and 3 distances equal to 3 (AD, BE, CF); 6*1 + 6*2 + 3*3 = 27.
Triangle starts:
  27;
  109, 210;
  279, 566, 822;
  569, 1182, 1816, 2328;
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[(4*m^3*(n + 1)^2 + 2*m^2*(3 + 11*n + 6*n^2 - 2*n^3))/3 + ((n*(28 + 45*n - 35*n^2 - 8*n^4)+20*m*(1 + 9*n + 6*n^2 - 4*n^3 + n^4)) / 30): n in [1..m]]: m in [1.. 15]]; // Vincenzo Librandi, Nov 16 2014
  • Maple
    TR := proc (m, n) options operator, arrow: (4/3)*m^3*(n+1)^2+(2/3)*m^2*(3+11*n+6*n^2-2*n^3)+(1/30)*n*(28+45*n-35*n^2-8*n^4)+(2/3)*m*(1+9*n+6*n^2-4*n^3+n^4) end proc: for m to 10 do seq(TR(m, n), n = 1 .. m) end do; # yields sequence in triangular form
    G := factor(sum(sum(TR(i, j)*z^i*t^j, j = 1 .. i), i = 1 .. infinity));

Formula

TR(m,n) = (4*m^3*(n + 1)^2 + 2*m^2*(3 + 11*n + 6*n^2 - 2*n^3))/3 + (n*(28 + 45*n - 35*n^2 - 8*n^4)+20*m*(1 + 9*n + 6*n^2 - 4*n^3 + n^4))/30; see Corollary 3,7 in the He et al. reference.
The reader can get the lengthy expression of the bivariate g.f. G by activating the Maple program for TR(m,n) and then activating the Maple program for G.
Showing 1-3 of 3 results.