A033548 Honaker primes: primes P(k) such that sum of digits of P(k) equals sum of digits of k.
131, 263, 457, 1039, 1049, 1091, 1301, 1361, 1433, 1571, 1913, 1933, 2141, 2221, 2273, 2441, 2591, 2663, 2707, 2719, 2729, 2803, 3067, 3137, 3229, 3433, 3559, 3631, 4091, 4153, 4357, 4397, 4703, 4723, 4903, 5009, 5507, 5701, 5711, 5741, 5801, 5843
Offset: 1
Examples
131 is the 32nd prime and sum of digits of both is 5.
References
- Proposed by G. L. Honaker, Jr.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Programs
-
Haskell
a033548 n = a033548_list !! (n-1) a033548_list = filter ((== 0) . a090431 . a049084) a000040_list -- Reinhard Zumkeller, Mar 16 2014
-
Maple
read("transforms") : isA033548 := proc(n) if isprime(n) and digsum(n) = digsum(numtheory[pi](n)) then true ; else false; end if; end proc: A033548 := proc(n) local p, k; if n = 1 then 131; else p := nextprime(procname(n-1)) ; while true do if isA033548(p) then return p; end if; p := nextprime(p) ; end do: end if; end proc: seq(A033548(n),n=1..40) ; # R. J. Mathar, Jul 07 2021
-
Mathematica
Prime[ Select[ Range[ 2000 ], Apply[ Plus, IntegerDigits[ # ] ] == Apply[ Plus, IntegerDigits[ Prime[ # ] ] ] & ] ] (* Santi Spadaro, Oct 14 2001 *) Select[ Prime@ Range@ 5927, Plus @@ IntegerDigits@ # == Plus @@ IntegerDigits@ PrimePi@ # &] (* Robert G. Wilson v, Jun 07 2009 *) nn=800;Transpose[Select[Thread[{Prime[Range[nn]],Range[nn]}],Total[IntegerDigits[First[#]]]== Total[ IntegerDigits[ Last[#]]]&]][[1]] (* Harvey P. Dale, Jun 13 2011 *)
-
PARI
is(n)=isprime(n) && sumdigits(n)==sumdigits(primepi(n)) \\ Charles R Greathouse IV, Jun 18 2015
-
Python
from sympy.ntheory.factor_ import digits from sympy import primepi, primerange print([n for n in primerange(1, 5901) if (sum(digits(n)[1:])==sum(digits(primepi(n))[1:]))]) # Indranil Ghosh, Jun 27 2017, after Charles R Greathouse IV
Formula
Extensions
More terms from Robert G. Wilson v, Jun 07 2009
Comments