A033562 a(n) = 2*n^3 + 1.
1, 3, 17, 55, 129, 251, 433, 687, 1025, 1459, 2001, 2663, 3457, 4395, 5489, 6751, 8193, 9827, 11665, 13719, 16001, 18523, 21297, 24335, 27649, 31251, 35153, 39367, 43905, 48779, 54001, 59583, 65537, 71875, 78609, 85751, 93313, 101307, 109745, 118639, 128001
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
List([0..50], n-> 2*n^3+1); # G. C. Greubel, Oct 12 2019
-
Magma
[2*n^3+1: n in [0..50]]; // G. C. Greubel, Oct 12 2019
-
Maple
seq(2*n^3+1, n=0..50); # G. C. Greubel, Oct 12 2019
-
Mathematica
2*Range[0,50]^3+1 (* Vladimir Joseph Stephan Orlovsky, Feb 14 2011*) CoefficientList[Series[1+x*(3+5x+5x^2-x^3)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Mar 13 2012 *) LinearRecurrence[{4,-6,4,-1},{1,3,17,55},50] (* Harvey P. Dale, Aug 14 2023 *)
-
PARI
a(n)=2*n^3+1 \\ Charles R Greathouse IV, Mar 11 2012
-
Sage
[2*n^3+1 for n in range(50)] # G. C. Greubel, Oct 12 2019
Formula
G.f.: 1 + x*(3 + 5*x + 5*x^2 - x^3)/(1-x)^4. - Vincenzo Librandi, Mar 13 2012
E.g.f.: (1 + 2*x + 6*x^2 + 2*x^3)*exp(x). - G. C. Greubel, Oct 12 2019
Extensions
Terms a(34) onward added by G. C. Greubel, Oct 12 2019
Comments