A033568 Second pentagonal numbers with odd index: a(n) = (2*n-1)*(3*n-1).
1, 2, 15, 40, 77, 126, 187, 260, 345, 442, 551, 672, 805, 950, 1107, 1276, 1457, 1650, 1855, 2072, 2301, 2542, 2795, 3060, 3337, 3626, 3927, 4240, 4565, 4902, 5251, 5612, 5985, 6370, 6767, 7176, 7597, 8030, 8475, 8932, 9401, 9882, 10375, 10880, 11397, 11926
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
List([0..50], n-> (2*n-1)*(3*n-1)); # G. C. Greubel, Oct 12 2019
-
Magma
[(2*n-1)*(3*n-1): n in [0..50]]; // G. C. Greubel, Oct 12 2019
-
Maple
seq((2*n-1)*(3*n-1), n=0..50); # G. C. Greubel, Oct 12 2019
-
Mathematica
Table[(2*n-1)*(3*n-1),{n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Apr 28 2010 *) LinearRecurrence[{3,-3,1},{1,2,15},50] (* Ray Chandler, Dec 08 2011 *)
-
PARI
a(n)=(2*n-1)*(3*n-1) \\ Charles R Greathouse IV, Sep 24 2015
-
Sage
[(2*n-1)*(3*n-1) for n in range(50)] # G. C. Greubel, Oct 12 2019
Formula
G.f.: (1-x+12*x^2)/(1-x)^3.
a(n) = a(n-1) + 12*n - 11 (with a(0)=1). - Vincenzo Librandi, Nov 17 2010
a(n) = 6*n^2 - 5*n + 1 = A051866(n) + 1. - Omar E. Pol, Jul 18 2012
E.g.f.: (1 + x + 6*x^2)*exp(x). - G. C. Greubel, Oct 12 2019
From Amiram Eldar, Feb 18 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + Pi/(2*sqrt(3)) + 2*log(2) - 3*log(3)/2.
Sum_{n>=0} (-1)^n/a(n) = 1 + (1/sqrt(3) - 1/2)*Pi - log(2). (End)
Extensions
More terms from Ray Chandler, Dec 08 2011
Comments