A033571 a(n) = (2*n + 1)*(5*n + 1).
1, 18, 55, 112, 189, 286, 403, 540, 697, 874, 1071, 1288, 1525, 1782, 2059, 2356, 2673, 3010, 3367, 3744, 4141, 4558, 4995, 5452, 5929, 6426, 6943, 7480, 8037, 8614, 9211, 9828, 10465, 11122, 11799, 12496, 13213, 13950, 14707, 15484, 16281, 17098, 17935, 18792, 19669, 20566, 21483
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Leo Tavares, Illustration: Stellar Layers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50], n-> (2*n+1)*(5*n+1)); # G. C. Greubel, Oct 12 2019
-
Magma
[(2*n+1)*(5*n+1): n in [0..50]]; // G. C. Greubel, Oct 12 2019
-
Maple
seq((2*n+1)*(5*n+1), n=0..50); # G. C. Greubel, Oct 12 2019
-
Mathematica
Table[(2*n+1)*(5*n+1), {n,0,50}] (* G. C. Greubel, Oct 12 2019 *)
-
PARI
a(n)=(2*n+1)*(5*n+1) \\ Charles R Greathouse IV, Jun 17 2017
-
Sage
[(2*n+1)*(5*n+1) for n in range(50)] # G. C. Greubel, Oct 12 2019
Formula
From Reinhard Zumkeller, Mar 13 2009: (Start)
a(n) = a(n-1) + 20*n - 3 (with a(0)=1). - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Oct 12 2019: (Start)
G.f.: (1 + 15*x + 4*x^2)/(1-x)^3.
E.g.f.: (1 + 17*x + 10*x^2)*exp(x). (End)
Sum_{n>=0} 1/a(n) = sqrt(1+2/sqrt(5))*Pi/6 + sqrt(5)*log(phi)/6 + 5*log(5)/12 - 2*log(2)/3, where phi is the golden ratio (A001622). - Amiram Eldar, Aug 23 2022
Extensions
Terms a(36) onward added by G. C. Greubel, Oct 12 2019
Comments