A033572 a(n) = (2*n+1)*(7*n+1).
1, 24, 75, 154, 261, 396, 559, 750, 969, 1216, 1491, 1794, 2125, 2484, 2871, 3286, 3729, 4200, 4699, 5226, 5781, 6364, 6975, 7614, 8281, 8976, 9699, 10450, 11229, 12036, 12871, 13734, 14625, 15544, 16491, 17466, 18469, 19500, 20559, 21646, 22761, 23904, 25075, 26274, 27501, 28756
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Bisection of A001106.
Programs
-
GAP
List([0..50], n-> (2*n+1)*(7*n+1)); # G. C. Greubel, Oct 12 2019
-
Magma
[(2*n+1)*(7*n+1): n in [0..50]]; // G. C. Greubel, Oct 12 2019
-
Maple
seq((2*n+1)*(7*n+1), n=0..50); # G. C. Greubel, Oct 12 2019
-
Mathematica
Table[(2*n+1)*(7*n+1), {n, 0, 50}] (* G. C. Greubel, Oct 12 2019 *) LinearRecurrence[{3,-3,1},{1,24,75},50] (* Harvey P. Dale, Apr 19 2023 *)
-
PARI
a(n)=(2*n+1)*(7*n+1) \\ Charles R Greathouse IV, Jun 17 2017
-
Sage
[(2*n+1)*(7*n+1) for n in range(50)] # G. C. Greubel, Oct 12 2019
Formula
a(n) = a(n-1) + 28*n - 5 for n>0, a(0)=1. - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Oct 12 2019: (Start)
G.f.: (1 + 21*x + 6*x^2)/(1-x)^3.
E.g.f.: (1 + 23*x + 14*x^2)*exp(x). (End)
Sum 1/a(n) = -gamma/5 -2*log(2)/5 -psi(1/7)/5 = 1.0800940432405839438217..., gamma=A001620, psi(1/7) = -A354627. - R. J. Mathar, May 07 2024
Comments