cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033582 a(n) = 7*n^2.

Original entry on oeis.org

0, 7, 28, 63, 112, 175, 252, 343, 448, 567, 700, 847, 1008, 1183, 1372, 1575, 1792, 2023, 2268, 2527, 2800, 3087, 3388, 3703, 4032, 4375, 4732, 5103, 5488, 5887, 6300, 6727, 7168, 7623, 8092, 8575, 9072, 9583, 10108, 10647, 11200, 11767, 12348, 12943, 13552, 14175
Offset: 0

Views

Author

Keywords

Comments

From Roberto E. Martinez II, Jan 07 2002: (Start)
Number of edges of the complete bipartite graph of order 8n, K_n,7n.
Number of edges of the complete tripartite graph of order 5n, K_n,n,3n. (End)

Crossrefs

Programs

Formula

Central terms of the triangle in A132111: a(n) = A132111(2*n,n). - Reinhard Zumkeller, Aug 10 2007
a(n) = 7*A000290(n). - Omar E. Pol, Dec 11 2008
a(n) = 14*n + a(n-1) - 7 (with a(0) = 0). - Vincenzo Librandi, Aug 05 2010
G.f.: -7*x*(1+x)/(x-1)^3. - R. J. Mathar, Feb 06 2017
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/42.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/84.
Product_{n>=1} (1 + 1/a(n)) = sqrt(7)*sinh(Pi/sqrt(7))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(7)*sin(Pi/sqrt(7))/Pi. (End)
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 7*exp(x)*x*(1 + x).
a(n) = n*A008589(n) = A195041(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)